Merge pull request #1356 from lightpanda-io/nikneym/subtle-crypto

Initial support for `SubtleCrypto` API
This commit is contained in:
Karl Seguin
2026-01-16 23:21:35 +00:00
committed by GitHub
5 changed files with 951 additions and 1 deletions

View File

@@ -1261,4 +1261,5 @@ pub const JsApis = flattenTypes(&.{
@import("../webapi/navigation/NavigationActivation.zig"), @import("../webapi/navigation/NavigationActivation.zig"),
@import("../webapi/canvas/CanvasRenderingContext2D.zig"), @import("../webapi/canvas/CanvasRenderingContext2D.zig"),
@import("../webapi/canvas/WebGLRenderingContext.zig"), @import("../webapi/canvas/WebGLRenderingContext.zig"),
@import("../webapi/SubtleCrypto.zig"),
}); });

View File

@@ -54,3 +54,68 @@
const regex = /^[0-9a-f]{8}-[0-9a-f]{4}-4[0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}$/i; const regex = /^[0-9a-f]{8}-[0-9a-f]{4}-4[0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}$/i;
testing.expectEqual(true, regex.test(uuid)); testing.expectEqual(true, regex.test(uuid));
</script> --> </script> -->
<script id=SubtleCrypto>
testing.expectEqual(true, crypto.subtle instanceof SubtleCrypto);
</script>
<script id=sign-and-verify-hmac>
testing.async(async () => {
let key = await crypto.subtle.generateKey(
{
name: "HMAC",
hash: { name: "SHA-512" },
},
true,
["sign", "verify"],
);
testing.expectEqual(true, key instanceof CryptoKey);
const raw = await crypto.subtle.exportKey("raw", key);
testing.expectEqual(128, raw.byteLength);
const encoder = new TextEncoder();
const signature = await crypto.subtle.sign(
"HMAC",
key,
encoder.encode("Hello, world!")
);
testing.expectEqual(true, signature instanceof ArrayBuffer);
const result = await window.crypto.subtle.verify(
{ name: "HMAC" },
key,
signature,
encoder.encode("Hello, world!")
);
testing.expectEqual(true, result);
});
</script>
<script id=derive-shared-key-x25519>
testing.async(async () => {
const { privateKey, publicKey } = await crypto.subtle.generateKey(
{ name: "X25519" },
true,
["deriveBits"],
);
testing.expectEqual(true, privateKey instanceof CryptoKey);
testing.expectEqual(true, publicKey instanceof CryptoKey);
const sharedKey = await crypto.subtle.deriveBits(
{
name: "X25519",
public: publicKey,
},
privateKey,
128,
);
testing.expectEqual(16, sharedKey.byteLength);
});
</script>

View File

@@ -19,8 +19,12 @@
const std = @import("std"); const std = @import("std");
const js = @import("../js/js.zig"); const js = @import("../js/js.zig");
const Page = @import("../Page.zig");
const SubtleCrypto = @import("SubtleCrypto.zig");
const Crypto = @This(); const Crypto = @This();
_pad: bool = false, _subtle: SubtleCrypto = .{},
pub const init: Crypto = .{}; pub const init: Crypto = .{};
@@ -42,6 +46,10 @@ pub fn randomUUID(_: *const Crypto) ![36]u8 {
return hex; return hex;
} }
pub fn getSubtle(self: *Crypto) *SubtleCrypto {
return &self._subtle;
}
const RandomValues = union(enum) { const RandomValues = union(enum) {
int8: []i8, int8: []i8,
uint8: []u8, uint8: []u8,
@@ -78,6 +86,7 @@ pub const JsApi = struct {
pub const getRandomValues = bridge.function(Crypto.getRandomValues, .{}); pub const getRandomValues = bridge.function(Crypto.getRandomValues, .{});
pub const randomUUID = bridge.function(Crypto.randomUUID, .{}); pub const randomUUID = bridge.function(Crypto.randomUUID, .{});
pub const subtle = bridge.accessor(Crypto.getSubtle, null, .{});
}; };
const testing = @import("../../testing.zig"); const testing = @import("../../testing.zig");

View File

@@ -0,0 +1,637 @@
// Copyright (C) 2023-2025 Lightpanda (Selecy SAS)
//
// Francis Bouvier <francis@lightpanda.io>
// Pierre Tachoire <pierre@lightpanda.io>
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
const std = @import("std");
const log = @import("../../log.zig");
const crypto = @import("../../crypto.zig");
const Page = @import("../Page.zig");
const js = @import("../js/js.zig");
pub fn registerTypes() []const type {
return &.{ SubtleCrypto, CryptoKey };
}
/// The SubtleCrypto interface of the Web Crypto API provides a number of low-level
/// cryptographic functions.
/// https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto
/// https://w3c.github.io/webcrypto/#subtlecrypto-interface
const SubtleCrypto = @This();
/// Don't optimize away the type.
_pad: bool = false,
const Algorithm = union(enum) {
/// For RSASSA-PKCS1-v1_5, RSA-PSS, or RSA-OAEP: pass an RsaHashedKeyGenParams object.
rsa_hashed_key_gen: RsaHashedKeyGen,
/// For HMAC: pass an HmacKeyGenParams object.
hmac_key_gen: HmacKeyGen,
/// Can be Ed25519 or X25519.
name: []const u8,
/// Can be Ed25519 or X25519.
object: struct { name: []const u8 },
/// https://developer.mozilla.org/en-US/docs/Web/API/RsaHashedKeyGenParams
const RsaHashedKeyGen = struct {
name: []const u8,
/// This should be at least 2048.
/// Some organizations are now recommending that it should be 4096.
modulusLength: u32,
publicExponent: js.TypedArray(u8),
hash: union(enum) {
string: []const u8,
object: struct { name: []const u8 },
},
};
/// https://developer.mozilla.org/en-US/docs/Web/API/HmacKeyGenParams
const HmacKeyGen = struct {
/// Always HMAC.
name: []const u8,
/// Its also possible to pass this in an object.
hash: union(enum) {
string: []const u8,
object: struct { name: []const u8 },
},
/// If omitted, default is the block size of the chosen hash function.
length: ?usize,
};
/// Alias.
const HmacImport = HmacKeyGen;
const EcdhKeyDeriveParams = struct {
/// Can be Ed25519 or X25519.
name: []const u8,
public: *const CryptoKey,
};
/// Algorithm for deriveBits() and deriveKey().
const DeriveBits = union(enum) {
ecdh_or_x25519: EcdhKeyDeriveParams,
};
};
/// Generate a new key (for symmetric algorithms) or key pair (for public-key algorithms).
pub fn generateKey(
_: *const SubtleCrypto,
algorithm: Algorithm,
extractable: bool,
key_usages: []const []const u8,
page: *Page,
) !js.Promise {
const key_or_pair = CryptoKey.init(algorithm, extractable, key_usages, page) catch |err| {
return page.js.rejectPromise(@errorName(err));
};
return page.js.resolvePromise(key_or_pair);
}
/// Exports a key: that is, it takes as input a CryptoKey object and gives you
/// the key in an external, portable format.
pub fn exportKey(
_: *const SubtleCrypto,
format: []const u8,
key: *CryptoKey,
page: *Page,
) !js.Promise {
if (!key.canExportKey()) {
return error.InvalidAccessError;
}
if (std.mem.eql(u8, format, "raw")) {
return page.js.resolvePromise(js.ArrayBuffer{ .values = key._key });
}
const is_unsupported = std.mem.eql(u8, format, "pkcs8") or
std.mem.eql(u8, format, "spki") or std.mem.eql(u8, format, "jwk");
if (is_unsupported) {
log.warn(.not_implemented, "SubtleCrypto.exportKey", .{ .format = format });
}
return page.js.rejectPromise(@errorName(error.NotSupported));
}
/// Derive a secret key from a master key.
pub fn deriveBits(
_: *const SubtleCrypto,
algorithm: Algorithm.DeriveBits,
base_key: *const CryptoKey, // Private key.
length: usize,
page: *Page,
) !js.Promise {
return switch (algorithm) {
.ecdh_or_x25519 => |p| {
const name = p.name;
if (std.mem.eql(u8, name, "X25519")) {
return page.js.resolvePromise(base_key.deriveBitsX25519(p.public, length, page));
}
if (std.mem.eql(u8, name, "ECDH")) {
log.warn(.not_implemented, "SubtleCrypto.deriveBits", .{ .name = name });
}
return page.js.rejectPromise(@errorName(error.NotSupported));
},
};
}
const SignatureAlgorithm = union(enum) {
string: []const u8,
object: struct { name: []const u8 },
pub fn isHMAC(self: SignatureAlgorithm) bool {
const name = switch (self) {
.string => |string| string,
.object => |object| object.name,
};
if (name.len < 4) return false;
const hmac: u32 = @bitCast([4]u8{ 'H', 'M', 'A', 'C' });
return @as(u32, @bitCast(name[0..4].*)) == hmac;
}
};
/// Generate a digital signature.
pub fn sign(
_: *const SubtleCrypto,
/// This can either be provided as string or object.
/// We can't use the `Algorithm` type defined before though since there
/// are couple of changes between the two.
/// https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/sign#algorithm
algorithm: SignatureAlgorithm,
key: *CryptoKey,
data: []const u8, // ArrayBuffer.
page: *Page,
) !js.Promise {
return switch (key._type) {
.hmac => {
// Verify algorithm.
if (!algorithm.isHMAC()) {
return page.js.rejectPromise(@errorName(error.InvalidAccessError));
}
// Call sign for HMAC.
const result = key.signHMAC(data, page) catch |err| {
return page.js.rejectPromise(@errorName(err));
};
return page.js.resolvePromise(result);
},
else => {
log.warn(.not_implemented, "SubtleCrypto.sign", .{ .key_type = key._type });
return page.js.rejectPromise(@errorName(error.InvalidAccessError));
},
};
}
/// Verify a digital signature.
pub fn verify(
_: *const SubtleCrypto,
algorithm: SignatureAlgorithm,
key: *const CryptoKey,
signature: []const u8, // ArrayBuffer.
data: []const u8, // ArrayBuffer.
page: *Page,
) !js.Promise {
if (!algorithm.isHMAC()) return error.InvalidAccessError;
return switch (key._type) {
.hmac => key.verifyHMAC(signature, data, page),
else => return error.InvalidAccessError,
};
}
/// Returns the desired digest by its name.
fn findDigest(name: []const u8) error{Invalid}!*const crypto.EVP_MD {
if (std.mem.eql(u8, "SHA-256", name)) {
return crypto.EVP_sha256();
}
if (std.mem.eql(u8, "SHA-384", name)) {
return crypto.EVP_sha384();
}
if (std.mem.eql(u8, "SHA-512", name)) {
return crypto.EVP_sha512();
}
if (std.mem.eql(u8, "SHA-1", name)) {
return crypto.EVP_sha1();
}
return error.Invalid;
}
const KeyOrPair = union(enum) { key: *CryptoKey, pair: CryptoKeyPair };
/// https://developer.mozilla.org/en-US/docs/Web/API/CryptoKeyPair
const CryptoKeyPair = struct {
privateKey: *CryptoKey,
publicKey: *CryptoKey,
};
/// Represents a cryptographic key obtained from one of the SubtleCrypto methods
/// generateKey(), deriveKey(), importKey(), or unwrapKey().
pub const CryptoKey = struct {
/// Algorithm being used.
_type: Type,
/// Whether the key is extractable.
_extractable: bool,
/// Bit flags of `usages`; see `Usages` type.
_usages: u8,
/// Raw bytes of key.
_key: []const u8,
/// Different algorithms may use different data structures;
/// this union can be used for such situations. Active field is understood
/// from `_type`.
_vary: extern union {
/// Used by HMAC.
digest: *const crypto.EVP_MD,
/// Used by asymmetric algorithms (X25519, Ed25519).
pkey: *crypto.EVP_PKEY,
},
pub const Type = enum(u8) { hmac, rsa, x25519 };
/// Changing the names of fields would affect bitmask creation.
pub const Usages = struct {
// zig fmt: off
pub const encrypt = 0x001;
pub const decrypt = 0x002;
pub const sign = 0x004;
pub const verify = 0x008;
pub const deriveKey = 0x010;
pub const deriveBits = 0x020;
pub const wrapKey = 0x040;
pub const unwrapKey = 0x080;
// zig fmt: on
};
pub fn init(
algorithm: Algorithm,
extractable: bool,
key_usages: []const []const u8,
page: *Page,
) !KeyOrPair {
return switch (algorithm) {
.hmac_key_gen => |hmac| initHMAC(hmac, extractable, key_usages, page),
.name => |name| {
if (std.mem.eql(u8, "X25519", name)) {
return initX25519(extractable, key_usages, page);
}
log.warn(.not_implemented, "CryptoKey.init", .{ .name = name });
return error.NotSupported;
},
.object => |object| {
// Ditto.
const name = object.name;
if (std.mem.eql(u8, "X25519", name)) {
return initX25519(extractable, key_usages, page);
}
log.warn(.not_implemented, "CryptoKey.init", .{ .name = name });
return error.NotSupported;
},
else => {
log.warn(.not_implemented, "CryptoKey.init", .{ .algorithm = algorithm });
return error.NotSupported;
},
};
}
inline fn canSign(self: *const CryptoKey) bool {
return self._usages & Usages.sign != 0;
}
inline fn canVerify(self: *const CryptoKey) bool {
return self._usages & Usages.verify != 0;
}
inline fn canDeriveBits(self: *const CryptoKey) bool {
return self._usages & Usages.deriveBits != 0;
}
inline fn canExportKey(self: *const CryptoKey) bool {
return self._extractable;
}
/// Only valid for HMAC.
inline fn getDigest(self: *const CryptoKey) *const crypto.EVP_MD {
return self._vary.digest;
}
/// Only valid for asymmetric algorithms (X25519, Ed25519).
inline fn getKeyObject(self: *const CryptoKey) *crypto.EVP_PKEY {
return self._vary.pkey;
}
// HMAC.
fn initHMAC(
algorithm: Algorithm.HmacKeyGen,
extractable: bool,
key_usages: []const []const u8,
page: *Page,
) !KeyOrPair {
const hash = switch (algorithm.hash) {
.string => |str| str,
.object => |obj| obj.name,
};
// Find digest.
const digest = try findDigest(hash);
// We need at least a single usage.
if (key_usages.len == 0) {
return error.SyntaxError;
}
// Calculate usages mask.
const decls = @typeInfo(Usages).@"struct".decls;
var usages_mask: u8 = 0;
iter_usages: for (key_usages) |usage| {
inline for (decls) |decl| {
if (std.mem.eql(u8, decl.name, usage)) {
usages_mask |= @field(Usages, decl.name);
continue :iter_usages;
}
}
// Unknown usage if got here.
return error.SyntaxError;
}
const block_size: usize = blk: {
// Caller provides this in bits, not bytes.
if (algorithm.length) |length| {
break :blk length / 8;
}
// Prefer block size of the hash function instead.
break :blk crypto.EVP_MD_block_size(digest);
};
const key = try page.arena.alloc(u8, block_size);
errdefer page.arena.free(key);
// HMAC is simply CSPRNG.
const res = crypto.RAND_bytes(key.ptr, key.len);
std.debug.assert(res == 1);
const crypto_key = try page._factory.create(CryptoKey{
._type = .hmac,
._extractable = extractable,
._usages = usages_mask,
._key = key,
._vary = .{ .digest = digest },
});
return .{ .key = crypto_key };
}
fn signHMAC(self: *const CryptoKey, data: []const u8, page: *Page) !js.ArrayBuffer {
if (!self.canSign()) {
return error.InvalidAccessError;
}
const buffer = try page.call_arena.alloc(u8, crypto.EVP_MD_size(self.getDigest()));
errdefer page.call_arena.free(buffer);
var out_len: u32 = 0;
// Try to sign.
const signed = crypto.HMAC(
self.getDigest(),
@ptrCast(self._key.ptr),
self._key.len,
data.ptr,
data.len,
buffer.ptr,
&out_len,
);
if (signed != null) {
return js.ArrayBuffer{ .values = buffer[0..out_len] };
}
// Not DOM exception, failed on our side.
return error.Invalid;
}
fn verifyHMAC(
self: *const CryptoKey,
signature: []const u8,
data: []const u8,
page: *Page,
) !js.Promise {
if (!self.canVerify()) {
return error.InvalidAccessError;
}
var buffer: [crypto.EVP_MAX_MD_BLOCK_SIZE]u8 = undefined;
var out_len: u32 = 0;
// Try to sign.
const signed = crypto.HMAC(
self.getDigest(),
@ptrCast(self._key.ptr),
self._key.len,
data.ptr,
data.len,
&buffer,
&out_len,
);
if (signed != null) {
// CRYPTO_memcmp compare in constant time so prohibits time-based attacks.
const res = crypto.CRYPTO_memcmp(signed, @ptrCast(signature.ptr), signature.len);
return page.js.resolvePromise(res == 0);
}
return page.js.resolvePromise(false);
}
// X25519.
/// Create a pair of X25519.
fn initX25519(
extractable: bool,
key_usages: []const []const u8,
page: *Page,
) !KeyOrPair {
// This code has too many allocations here and there, might be nice to
// gather them together with a single alloc call. Not sure if factory
// pattern is suitable for it though.
// Calculate usages; only matters for private key.
// Only deriveKey() and deriveBits() be used for X25519.
if (key_usages.len == 0) {
return error.SyntaxError;
}
var mask: u8 = 0;
iter_usages: for (key_usages) |usage| {
inline for ([_][]const u8{ "deriveKey", "deriveBits" }) |name| {
if (std.mem.eql(u8, name, usage)) {
mask |= @field(Usages, name);
continue :iter_usages;
}
}
// Unknown usage if got here.
return error.SyntaxError;
}
const public_value = try page.arena.alloc(u8, crypto.X25519_PUBLIC_VALUE_LEN);
errdefer page.arena.free(public_value);
const private_key = try page.arena.alloc(u8, crypto.X25519_PRIVATE_KEY_LEN);
errdefer page.arena.free(private_key);
// There's no info about whether this can fail; so I assume it cannot.
crypto.X25519_keypair(@ptrCast(public_value), @ptrCast(private_key));
// Create EVP_PKEY for public key.
// Seems we can use `EVP_PKEY_from_raw_private_key` for this, Chrome
// prefer not to, yet BoringSSL added it and recommends instead of what
// we're doing currently.
const public_pkey = crypto.EVP_PKEY_new_raw_public_key(
crypto.EVP_PKEY_X25519,
null,
public_value.ptr,
public_value.len,
);
if (public_pkey == null) {
return error.OutOfMemory;
}
// Create EVP_PKEY for private key.
// Seems we can use `EVP_PKEY_from_raw_private_key` for this, Chrome
// prefer not to, yet BoringSSL added it and recommends instead of what
// we're doing currently.
const private_pkey = crypto.EVP_PKEY_new_raw_private_key(
crypto.EVP_PKEY_X25519,
null,
private_key.ptr,
private_key.len,
);
if (private_pkey == null) {
return error.OutOfMemory;
}
const private = try page._factory.create(CryptoKey{
._type = .x25519,
._extractable = extractable,
._usages = mask,
._key = private_key,
._vary = .{ .pkey = private_pkey.? },
});
errdefer page._factory.destroy(private);
const public = try page._factory.create(CryptoKey{
._type = .x25519,
// Public keys are always extractable.
._extractable = true,
// Always empty for public key.
._usages = 0,
._key = public_value,
._vary = .{ .pkey = public_pkey.? },
});
errdefer page._factory.destroy(public);
return .{ .pair = .{ .privateKey = private, .publicKey = public } };
}
fn deriveBitsX25519(
private: *const CryptoKey,
public: *const CryptoKey,
length_in_bits: usize,
page: *Page,
) !js.ArrayBuffer {
if (!private.canDeriveBits()) {
return error.InvalidAccessError;
}
const maybe_ctx = crypto.EVP_PKEY_CTX_new(private.getKeyObject(), null);
if (maybe_ctx) |ctx| {
// Context is valid, free it on failure.
errdefer crypto.EVP_PKEY_CTX_free(ctx);
// Init derive operation and set public key as peer.
if (crypto.EVP_PKEY_derive_init(ctx) != 1 or
crypto.EVP_PKEY_derive_set_peer(ctx, public.getKeyObject()) != 1)
{
// Failed on our end.
return error.Internal;
}
const derived_key = try page.call_arena.alloc(u8, 32);
errdefer page.call_arena.free(derived_key);
var out_key_len: usize = derived_key.len;
const result = crypto.EVP_PKEY_derive(ctx, derived_key.ptr, &out_key_len);
if (result != 1) {
// Failed on our end.
return error.Internal;
}
// Sanity check.
std.debug.assert(derived_key.len == out_key_len);
// Length is in bits, convert to byte length.
const length = (length_in_bits / 8) + (7 + (length_in_bits % 8)) / 8;
// Truncate the slice to specified length.
// Same as `derived_key`.
const tailored = blk: {
if (length > derived_key.len) {
return error.LengthTooLong;
}
break :blk derived_key[0..length];
};
// Zero any "unused bits" in the final byte.
const remainder_bits: u3 = @intCast(length_in_bits % 8);
if (remainder_bits != 0) {
tailored[tailored.len - 1] &= ~(@as(u8, 0xFF) >> remainder_bits);
}
return js.ArrayBuffer{ .values = tailored };
}
// Failed on our end.
return error.Internal;
}
pub const JsApi = struct {
pub const bridge = js.Bridge(CryptoKey);
pub const Meta = struct {
pub const name = "CryptoKey";
pub var class_id: bridge.ClassId = undefined;
pub const prototype_chain = bridge.prototypeChain();
};
};
};
pub const JsApi = struct {
pub const bridge = js.Bridge(SubtleCrypto);
pub const Meta = struct {
pub const name = "SubtleCrypto";
pub var class_id: bridge.ClassId = undefined;
pub const prototype_chain = bridge.prototypeChain();
};
pub const generateKey = bridge.function(SubtleCrypto.generateKey, .{ .dom_exception = true });
pub const exportKey = bridge.function(SubtleCrypto.exportKey, .{ .dom_exception = true });
pub const sign = bridge.function(SubtleCrypto.sign, .{ .dom_exception = true });
pub const verify = bridge.function(SubtleCrypto.verify, .{ .dom_exception = true });
pub const deriveBits = bridge.function(SubtleCrypto.deriveBits, .{ .dom_exception = true });
};

238
src/crypto.zig Normal file
View File

@@ -0,0 +1,238 @@
//! libcrypto utilities we use throughout browser.
const std = @import("std");
const pthread_rwlock_t = std.c.pthread_rwlock_t;
pub const struct_env_md_st = opaque {};
pub const EVP_MD = struct_env_md_st;
pub const evp_pkey_alg_st = opaque {};
pub const EVP_PKEY_ALG = evp_pkey_alg_st;
pub const struct_engine_st = opaque {};
pub const ENGINE = struct_engine_st;
pub const CRYPTO_THREADID = c_int;
pub const struct_asn1_null_st = opaque {};
pub const ASN1_NULL = struct_asn1_null_st;
pub const ASN1_BOOLEAN = c_int;
pub const struct_ASN1_ITEM_st = opaque {};
pub const ASN1_ITEM = struct_ASN1_ITEM_st;
pub const struct_asn1_object_st = opaque {};
pub const ASN1_OBJECT = struct_asn1_object_st;
pub const struct_asn1_pctx_st = opaque {};
pub const ASN1_PCTX = struct_asn1_pctx_st;
pub const struct_asn1_string_st = extern struct {
length: c_int,
type: c_int,
data: [*c]u8,
flags: c_long,
};
pub const ASN1_BIT_STRING = struct_asn1_string_st;
pub const ASN1_BMPSTRING = struct_asn1_string_st;
pub const ASN1_ENUMERATED = struct_asn1_string_st;
pub const ASN1_GENERALIZEDTIME = struct_asn1_string_st;
pub const ASN1_GENERALSTRING = struct_asn1_string_st;
pub const ASN1_IA5STRING = struct_asn1_string_st;
pub const ASN1_INTEGER = struct_asn1_string_st;
pub const ASN1_OCTET_STRING = struct_asn1_string_st;
pub const ASN1_PRINTABLESTRING = struct_asn1_string_st;
pub const ASN1_STRING = struct_asn1_string_st;
pub const ASN1_T61STRING = struct_asn1_string_st;
pub const ASN1_TIME = struct_asn1_string_st;
pub const ASN1_UNIVERSALSTRING = struct_asn1_string_st;
pub const ASN1_UTCTIME = struct_asn1_string_st;
pub const ASN1_UTF8STRING = struct_asn1_string_st;
pub const ASN1_VISIBLESTRING = struct_asn1_string_st;
pub const struct_ASN1_VALUE_st = opaque {};
pub const ASN1_VALUE = struct_ASN1_VALUE_st;
const union_unnamed_1 = extern union {
ptr: [*c]u8,
boolean: ASN1_BOOLEAN,
asn1_string: [*c]ASN1_STRING,
object: ?*ASN1_OBJECT,
integer: [*c]ASN1_INTEGER,
enumerated: [*c]ASN1_ENUMERATED,
bit_string: [*c]ASN1_BIT_STRING,
octet_string: [*c]ASN1_OCTET_STRING,
printablestring: [*c]ASN1_PRINTABLESTRING,
t61string: [*c]ASN1_T61STRING,
ia5string: [*c]ASN1_IA5STRING,
generalstring: [*c]ASN1_GENERALSTRING,
bmpstring: [*c]ASN1_BMPSTRING,
universalstring: [*c]ASN1_UNIVERSALSTRING,
utctime: [*c]ASN1_UTCTIME,
generalizedtime: [*c]ASN1_GENERALIZEDTIME,
visiblestring: [*c]ASN1_VISIBLESTRING,
utf8string: [*c]ASN1_UTF8STRING,
set: [*c]ASN1_STRING,
sequence: [*c]ASN1_STRING,
asn1_value: ?*ASN1_VALUE,
};
pub const struct_asn1_type_st = extern struct {
type: c_int,
value: union_unnamed_1,
};
pub const ASN1_TYPE = struct_asn1_type_st;
pub const struct_AUTHORITY_KEYID_st = opaque {};
pub const AUTHORITY_KEYID = struct_AUTHORITY_KEYID_st;
pub const struct_BASIC_CONSTRAINTS_st = opaque {};
pub const BASIC_CONSTRAINTS = struct_BASIC_CONSTRAINTS_st;
pub const struct_DIST_POINT_st = opaque {};
pub const DIST_POINT = struct_DIST_POINT_st;
pub const BN_ULONG = u64;
pub const struct_bignum_st = extern struct {
d: [*c]BN_ULONG,
width: c_int,
dmax: c_int,
neg: c_int,
flags: c_int,
};
pub const BIGNUM = struct_bignum_st;
pub const struct_DSA_SIG_st = extern struct {
r: [*c]BIGNUM,
s: [*c]BIGNUM,
};
pub const DSA_SIG = struct_DSA_SIG_st;
pub const struct_ISSUING_DIST_POINT_st = opaque {};
pub const ISSUING_DIST_POINT = struct_ISSUING_DIST_POINT_st;
pub const struct_NAME_CONSTRAINTS_st = opaque {};
pub const NAME_CONSTRAINTS = struct_NAME_CONSTRAINTS_st;
pub const struct_X509_pubkey_st = opaque {};
pub const X509_PUBKEY = struct_X509_pubkey_st;
pub const struct_Netscape_spkac_st = extern struct {
pubkey: ?*X509_PUBKEY,
challenge: [*c]ASN1_IA5STRING,
};
pub const NETSCAPE_SPKAC = struct_Netscape_spkac_st;
pub const struct_X509_algor_st = extern struct {
algorithm: ?*ASN1_OBJECT,
parameter: [*c]ASN1_TYPE,
};
pub const X509_ALGOR = struct_X509_algor_st;
pub const struct_Netscape_spki_st = extern struct {
spkac: [*c]NETSCAPE_SPKAC,
sig_algor: [*c]X509_ALGOR,
signature: [*c]ASN1_BIT_STRING,
};
pub const NETSCAPE_SPKI = struct_Netscape_spki_st;
pub const struct_RIPEMD160state_st = opaque {};
pub const RIPEMD160_CTX = struct_RIPEMD160state_st;
pub const struct_X509_VERIFY_PARAM_st = opaque {};
pub const X509_VERIFY_PARAM = struct_X509_VERIFY_PARAM_st;
pub const struct_X509_crl_st = opaque {};
pub const X509_CRL = struct_X509_crl_st;
pub const struct_X509_extension_st = opaque {};
pub const X509_EXTENSION = struct_X509_extension_st;
pub const struct_x509_st = opaque {};
pub const X509 = struct_x509_st;
pub const CRYPTO_refcount_t = u32;
pub const struct_openssl_method_common_st = extern struct {
references: c_int,
is_static: u8,
};
pub const struct_rsa_meth_st = extern struct {
common: struct_openssl_method_common_st,
app_data: ?*anyopaque,
init: ?*const fn (?*RSA) callconv(.c) c_int,
finish: ?*const fn (?*RSA) callconv(.c) c_int,
size: ?*const fn (?*const RSA) callconv(.c) usize,
sign: ?*const fn (c_int, [*c]const u8, c_uint, [*c]u8, [*c]c_uint, ?*const RSA) callconv(.c) c_int,
sign_raw: ?*const fn (?*RSA, [*c]usize, [*c]u8, usize, [*c]const u8, usize, c_int) callconv(.c) c_int,
decrypt: ?*const fn (?*RSA, [*c]usize, [*c]u8, usize, [*c]const u8, usize, c_int) callconv(.c) c_int,
private_transform: ?*const fn (?*RSA, [*c]u8, [*c]const u8, usize) callconv(.c) c_int,
flags: c_int,
};
pub const RSA_METHOD = struct_rsa_meth_st;
pub const struct_stack_st_void = opaque {};
pub const struct_crypto_ex_data_st = extern struct {
sk: ?*struct_stack_st_void,
};
pub const CRYPTO_EX_DATA = struct_crypto_ex_data_st;
pub const CRYPTO_MUTEX = pthread_rwlock_t;
pub const struct_bn_mont_ctx_st = extern struct {
RR: BIGNUM,
N: BIGNUM,
n0: [2]BN_ULONG,
};
pub const BN_MONT_CTX = struct_bn_mont_ctx_st;
pub const struct_bn_blinding_st = opaque {};
pub const BN_BLINDING = struct_bn_blinding_st; // boringssl/include/openssl/rsa.h:788:12: warning: struct demoted to opaque type - has bitfield
pub const struct_rsa_st = opaque {};
pub const RSA = struct_rsa_st;
pub const struct_dsa_st = extern struct {
version: c_long,
p: [*c]BIGNUM,
q: [*c]BIGNUM,
g: [*c]BIGNUM,
pub_key: [*c]BIGNUM,
priv_key: [*c]BIGNUM,
flags: c_int,
method_mont_lock: CRYPTO_MUTEX,
method_mont_p: [*c]BN_MONT_CTX,
method_mont_q: [*c]BN_MONT_CTX,
references: CRYPTO_refcount_t,
ex_data: CRYPTO_EX_DATA,
};
pub const DSA = struct_dsa_st;
pub const struct_dh_st = opaque {};
pub const DH = struct_dh_st;
pub const struct_ec_key_st = opaque {};
pub const EC_KEY = struct_ec_key_st;
const union_unnamed_2 = extern union {
ptr: ?*anyopaque,
rsa: ?*RSA,
dsa: [*c]DSA,
dh: ?*DH,
ec: ?*EC_KEY,
};
pub const struct_evp_pkey_asn1_method_st = opaque {};
pub const EVP_PKEY_ASN1_METHOD = struct_evp_pkey_asn1_method_st;
pub const struct_evp_pkey_st = extern struct {
references: CRYPTO_refcount_t,
type: c_int,
pkey: union_unnamed_2,
ameth: ?*const EVP_PKEY_ASN1_METHOD,
};
pub const EVP_PKEY = struct_evp_pkey_st;
pub const struct_evp_pkey_ctx_st = opaque {};
pub const EVP_PKEY_CTX = struct_evp_pkey_ctx_st;
pub extern fn RAND_bytes(buf: [*]u8, len: usize) c_int;
pub extern fn EVP_sha1() *const EVP_MD;
pub extern fn EVP_sha256() *const EVP_MD;
pub extern fn EVP_sha384() *const EVP_MD;
pub extern fn EVP_sha512() *const EVP_MD;
pub const EVP_MAX_MD_BLOCK_SIZE = 128;
pub extern fn EVP_MD_size(md: ?*const EVP_MD) usize;
pub extern fn EVP_MD_block_size(md: ?*const EVP_MD) usize;
pub extern fn CRYPTO_memcmp(a: ?*const anyopaque, b: ?*const anyopaque, len: usize) c_int;
pub extern fn HMAC(
evp_md: *const EVP_MD,
key: *const anyopaque,
key_len: usize,
data: [*]const u8,
data_len: usize,
out: [*]u8,
out_len: *c_uint,
) ?[*]u8;
pub const X25519_PRIVATE_KEY_LEN = 32;
pub const X25519_PUBLIC_VALUE_LEN = 32;
pub const X25519_SHARED_KEY_LEN = 32;
pub extern fn X25519_keypair(out_public_value: *[32]u8, out_private_key: *[32]u8) void;
pub const NID_X25519 = @as(c_int, 948);
pub const EVP_PKEY_X25519 = NID_X25519;
pub extern fn EVP_PKEY_new_raw_private_key(@"type": c_int, unused: ?*ENGINE, in: [*c]const u8, len: usize) [*c]EVP_PKEY;
pub extern fn EVP_PKEY_new_raw_public_key(@"type": c_int, unused: ?*ENGINE, in: [*c]const u8, len: usize) [*c]EVP_PKEY;
pub extern fn EVP_PKEY_CTX_new(pkey: [*c]EVP_PKEY, e: ?*ENGINE) ?*EVP_PKEY_CTX;
pub extern fn EVP_PKEY_CTX_free(ctx: ?*EVP_PKEY_CTX) void;
pub extern fn EVP_PKEY_derive_init(ctx: ?*EVP_PKEY_CTX) c_int;
pub extern fn EVP_PKEY_derive(ctx: ?*EVP_PKEY_CTX, key: [*c]u8, out_key_len: [*c]usize) c_int;
pub extern fn EVP_PKEY_derive_set_peer(ctx: ?*EVP_PKEY_CTX, peer: [*c]EVP_PKEY) c_int;