Merge pull request #1238 from lightpanda-io/zigdom-chain-allocation

Prototype Chain Allocations
This commit is contained in:
muki
2025-12-01 07:09:38 -08:00
committed by GitHub
8 changed files with 382 additions and 237 deletions

View File

@@ -17,6 +17,7 @@
// along with this program. If not, see <https://www.gnu.org/licenses/>.
const std = @import("std");
const assert = std.debug.assert;
const builtin = @import("builtin");
const reflect = @import("reflect.zig");
const IS_DEBUG = builtin.mode == .Debug;
@@ -35,21 +36,113 @@ const EventTarget = @import("webapi/EventTarget.zig");
const XMLHttpRequestEventTarget = @import("webapi/net/XMLHttpRequestEventTarget.zig");
const Blob = @import("webapi/Blob.zig");
const MemoryPoolAligned = std.heap.MemoryPoolAligned;
// 1. Generally, wrapping an ArenaAllocator within an ArenaAllocator doesn't make
// much sense. But wrapping a MemoryPool within an Arena does. Specifically, by
// doing so, we solve a major issue with Arena: freed memory can be re-used [for
// more of the same size].
// 2. Normally, you have a MemoryPool(T) where T is a `User` or something. Then
// the MemoryPool can be used for creating users. But in reality, that memory
// created by that pool could be re-used for anything with the same size (or less)
// than a User (and a compatible alignment). So that's what we do - we have size
// (and alignment) based pools.
const Factory = @This();
_page: *Page,
_slab: SlabAllocator,
fn PrototypeChain(comptime types: []const type) type {
return struct {
const Self = @This();
memory: []u8,
fn totalSize() usize {
var size: usize = 0;
for (types) |T| {
size = std.mem.alignForward(usize, size, @alignOf(T));
size += @sizeOf(T);
}
return size;
}
fn maxAlign() std.mem.Alignment {
var alignment: std.mem.Alignment = .@"1";
for (types) |T| {
alignment = std.mem.Alignment.max(alignment, std.mem.Alignment.of(T));
}
return alignment;
}
fn getType(comptime index: usize) type {
return types[index];
}
fn allocate(allocator: std.mem.Allocator) !Self {
const size = comptime Self.totalSize();
const alignment = comptime Self.maxAlign();
const memory = try allocator.alignedAlloc(u8, alignment, size);
return .{ .memory = memory };
}
fn get(self: *const Self, comptime index: usize) *getType(index) {
var offset: usize = 0;
inline for (types, 0..) |T, i| {
offset = std.mem.alignForward(usize, offset, @alignOf(T));
if (i == index) {
return @as(*T, @ptrCast(@alignCast(self.memory.ptr + offset)));
}
offset += @sizeOf(T);
}
unreachable;
}
fn set(self: *const Self, comptime index: usize, value: getType(index)) void {
const ptr = self.get(index);
ptr.* = value;
}
fn setRoot(self: *const Self, comptime T: type) void {
const ptr = self.get(0);
ptr.* = .{ ._type = unionInit(T, self.get(1)) };
}
fn setMiddle(self: *const Self, comptime index: usize, comptime T: type) void {
assert(index >= 1);
assert(index < types.len);
const ptr = self.get(index);
ptr.* = .{ ._proto = self.get(index - 1), ._type = unionInit(T, self.get(index + 1)) };
}
fn setMiddleWithValue(self: *const Self, comptime index: usize, comptime T: type, value: anytype) void {
assert(index >= 1);
const ptr = self.get(index);
ptr.* = .{ ._proto = self.get(index - 1), ._type = unionInit(T, value) };
}
fn setLeaf(self: *const Self, comptime index: usize, value: anytype) void {
assert(index >= 1);
const ptr = self.get(index);
ptr.* = value;
ptr._proto = self.get(index - 1);
}
};
}
fn AutoPrototypeChain(comptime types: []const type) type {
return struct {
fn create(allocator: std.mem.Allocator, leaf_value: anytype) !*@TypeOf(leaf_value) {
const chain = try PrototypeChain(types).allocate(allocator);
const RootType = types[0];
chain.setRoot(RootType.Type);
inline for (1..types.len - 1) |i| {
const MiddleType = types[i];
chain.setMiddle(i, MiddleType.Type);
}
chain.setLeaf(types.len - 1, leaf_value);
return chain.get(types.len - 1);
}
};
}
pub fn init(page: *Page) Factory {
return .{
._page = page,
@@ -59,168 +152,163 @@ pub fn init(page: *Page) Factory {
// this is a root object
pub fn eventTarget(self: *Factory, child: anytype) !*@TypeOf(child) {
const child_ptr = try self.createT(@TypeOf(child));
child_ptr.* = child;
const allocator = self._slab.allocator();
const chain = try PrototypeChain(
&.{ EventTarget, @TypeOf(child) },
).allocate(allocator);
const et = try self.createT(EventTarget);
child_ptr._proto = et;
et.* = .{ ._type = unionInit(EventTarget.Type, child_ptr) };
return child_ptr;
}
const event_ptr = chain.get(0);
event_ptr.* = .{
._type = unionInit(EventTarget.Type, chain.get(1)),
};
chain.setLeaf(1, child);
pub fn node(self: *Factory, child: anytype) !*@TypeOf(child) {
const child_ptr = try self.createT(@TypeOf(child));
child_ptr.* = child;
child_ptr._proto = try self.eventTarget(Node{
._proto = undefined,
._type = unionInit(Node.Type, child_ptr),
});
return child_ptr;
}
pub fn document(self: *Factory, child: anytype) !*@TypeOf(child) {
const child_ptr = try self.createT(@TypeOf(child));
child_ptr.* = child;
child_ptr._proto = try self.node(Document{
._proto = undefined,
._type = unionInit(Document.Type, child_ptr),
});
return child_ptr;
}
pub fn documentFragment(self: *Factory, child: anytype) !*@TypeOf(child) {
const child_ptr = try self.createT(@TypeOf(child));
child_ptr.* = child;
child_ptr._proto = try self.node(Node.DocumentFragment{
._proto = undefined,
._type = unionInit(Node.DocumentFragment.Type, child_ptr),
});
return child_ptr;
}
pub fn element(self: *Factory, child: anytype) !*@TypeOf(child) {
const child_ptr = try self.createT(@TypeOf(child));
child_ptr.* = child;
child_ptr._proto = try self.node(Element{
._proto = undefined,
._type = unionInit(Element.Type, child_ptr),
});
return child_ptr;
}
pub fn htmlElement(self: *Factory, child: anytype) !*@TypeOf(child) {
if (comptime fieldIsPointer(Element.Html.Type, @TypeOf(child))) {
const child_ptr = try self.createT(@TypeOf(child));
child_ptr.* = child;
child_ptr._proto = try self.element(Element.Html{
._proto = undefined,
._type = unionInit(Element.Html.Type, child_ptr),
});
return child_ptr;
}
// Our union type fields are usually pointers. But, at the leaf, they
// can be struct (if all they contain is the `_proto` field, then we might
// as well store it directly in the struct).
const html = try self.element(Element.Html{
._proto = undefined,
._type = unionInit(Element.Html.Type, child),
});
const field_name = comptime unionFieldName(Element.Html.Type, @TypeOf(child));
var child_ptr = &@field(html._type, field_name);
child_ptr._proto = html;
return child_ptr;
}
pub fn svgElement(self: *Factory, tag_name: []const u8, child: anytype) !*@TypeOf(child) {
if (@TypeOf(child) == Element.Svg) {
return self.element(child);
}
// will never allocate, can't fail
const tag_name_str = String.init(self._page.arena, tag_name, .{}) catch unreachable;
if (comptime fieldIsPointer(Element.Svg.Type, @TypeOf(child))) {
const child_ptr = try self.createT(@TypeOf(child));
child_ptr.* = child;
child_ptr._proto = try self.element(Element.Svg{
._proto = undefined,
._tag_name = tag_name_str,
._type = unionInit(Element.Svg.Type, child_ptr),
});
return child_ptr;
}
// Our union type fields are usually pointers. But, at the leaf, they
// can be struct (if all they contain is the `_proto` field, then we might
// as well store it directly in the struct).
const svg = try self.element(Element.Svg{
._proto = undefined,
._tag_name = tag_name_str,
._type = unionInit(Element.Svg.Type, child),
});
const field_name = comptime unionFieldName(Element.Svg.Type, @TypeOf(child));
var child_ptr = &@field(svg._type, field_name);
child_ptr._proto = svg;
return child_ptr;
return chain.get(1);
}
// this is a root object
pub fn event(self: *Factory, typ: []const u8, child: anytype) !*@TypeOf(child) {
const child_ptr = try self.createT(@TypeOf(child));
child_ptr.* = child;
const allocator = self._slab.allocator();
const e = try self.createT(Event);
child_ptr._proto = e;
e.* = .{
._type = unionInit(Event.Type, child_ptr),
// Special case: Event has a _type_string field, so we need manual setup
const chain = try PrototypeChain(
&.{ Event, @TypeOf(child) },
).allocate(allocator);
const event_ptr = chain.get(0);
event_ptr.* = .{
._type = unionInit(Event.Type, chain.get(1)),
._type_string = try String.init(self._page.arena, typ, .{}),
};
return child_ptr;
}
chain.setLeaf(1, child);
pub fn xhrEventTarget(self: *Factory, child: anytype) !*@TypeOf(child) {
const et = try self.eventTarget(XMLHttpRequestEventTarget{
._proto = undefined,
._type = unionInit(XMLHttpRequestEventTarget.Type, child),
});
const field_name = comptime unionFieldName(XMLHttpRequestEventTarget.Type, @TypeOf(child));
var child_ptr = &@field(et._type, field_name);
child_ptr._proto = et;
return child_ptr;
return chain.get(1);
}
pub fn blob(self: *Factory, child: anytype) !*@TypeOf(child) {
const child_ptr = try self.createT(@TypeOf(child));
child_ptr.* = child;
const allocator = self._slab.allocator();
const b = try self.createT(Blob);
child_ptr._proto = b;
b.* = .{
._type = unionInit(Blob.Type, child_ptr),
// Special case: Blob has slice and mime fields, so we need manual setup
const chain = try PrototypeChain(
&.{ Blob, @TypeOf(child) },
).allocate(allocator);
const blob_ptr = chain.get(0);
blob_ptr.* = .{
._type = unionInit(Blob.Type, chain.get(1)),
.slice = "",
.mime = "",
};
return child_ptr;
chain.setLeaf(1, child);
return chain.get(1);
}
pub fn create(self: *Factory, value: anytype) !*@TypeOf(value) {
const ptr = try self.createT(@TypeOf(value));
ptr.* = value;
return ptr;
}
pub fn createT(self: *Factory, comptime T: type) !*T {
pub fn node(self: *Factory, child: anytype) !*@TypeOf(child) {
const allocator = self._slab.allocator();
return try allocator.create(T);
return try AutoPrototypeChain(
&.{ EventTarget, Node, @TypeOf(child) },
).create(allocator, child);
}
pub fn document(self: *Factory, child: anytype) !*@TypeOf(child) {
const allocator = self._slab.allocator();
return try AutoPrototypeChain(
&.{ EventTarget, Node, Document, @TypeOf(child) },
).create(allocator, child);
}
pub fn documentFragment(self: *Factory, child: anytype) !*@TypeOf(child) {
const allocator = self._slab.allocator();
return try AutoPrototypeChain(
&.{ EventTarget, Node, Node.DocumentFragment, @TypeOf(child) },
).create(allocator, child);
}
pub fn element(self: *Factory, child: anytype) !*@TypeOf(child) {
const allocator = self._slab.allocator();
return try AutoPrototypeChain(
&.{ EventTarget, Node, Element, @TypeOf(child) },
).create(allocator, child);
}
pub fn htmlElement(self: *Factory, child: anytype) !*@TypeOf(child) {
const allocator = self._slab.allocator();
return try AutoPrototypeChain(
&.{ EventTarget, Node, Element, Element.Html, @TypeOf(child) },
).create(allocator, child);
}
pub fn svgElement(self: *Factory, tag_name: []const u8, child: anytype) !*@TypeOf(child) {
const allocator = self._slab.allocator();
const ChildT = @TypeOf(child);
if (ChildT == Element.Svg) {
return self.element(child);
}
const chain = try PrototypeChain(
&.{ EventTarget, Node, Element, Element.Svg, ChildT },
).allocate(allocator);
chain.setRoot(EventTarget.Type);
chain.setMiddle(1, Node.Type);
chain.setMiddle(2, Element.Type);
// will never allocate, can't fail
const tag_name_str = String.init(self._page.arena, tag_name, .{}) catch unreachable;
// Manually set Element.Svg with the tag_name
chain.set(3, .{
._proto = chain.get(2),
._tag_name = tag_name_str,
._type = unionInit(Element.Svg.Type, chain.get(4)),
});
chain.setLeaf(4, child);
return chain.get(4);
}
pub fn xhrEventTarget(self: *Factory, child: anytype) !*@TypeOf(child) {
const allocator = self._slab.allocator();
return try AutoPrototypeChain(
&.{ EventTarget, XMLHttpRequestEventTarget, @TypeOf(child) },
).create(allocator, child);
}
fn hasChainRoot(comptime T: type) bool {
// Check if this is a root
if (@hasDecl(T, "_prototype_root")) {
return true;
}
// If no _proto field, we're at the top but not a recognized root
if (!@hasField(T, "_proto")) return false;
// Get the _proto field's type and recurse
const fields = @typeInfo(T).@"struct".fields;
inline for (fields) |field| {
if (std.mem.eql(u8, field.name, "_proto")) {
const ProtoType = reflect.Struct(field.type);
return hasChainRoot(ProtoType);
}
}
return false;
}
fn isChainType(comptime T: type) bool {
if (@hasField(T, "_proto")) return false;
return comptime hasChainRoot(T);
}
pub fn destroy(self: *Factory, value: anytype) void {
const S = reflect.Struct(@TypeOf(value));
if (comptime IS_DEBUG) {
// We should always destroy from the leaf down.
if (@hasField(S, "_type") and @typeInfo(@TypeOf(value._type)) == .@"union") {
if (@hasDecl(S, "_prototype_root")) {
// A Event{._type == .generic} (or any other similar types)
// _should_ be destoyed directly. The _type = .generic is a pseudo
// child
@@ -231,14 +319,48 @@ pub fn destroy(self: *Factory, value: anytype) void {
}
}
self.destroyChain(value, true);
if (comptime isChainType(S)) {
self.destroyChain(value, true, 0, std.mem.Alignment.@"1");
} else {
self.destroyStandalone(value);
}
}
fn destroyChain(self: *Factory, value: anytype, comptime first: bool) void {
pub fn destroyStandalone(self: *Factory, value: anytype) void {
const S = reflect.Struct(@TypeOf(value));
assert(!@hasDecl(S, "_prototype_root"));
const allocator = self._slab.allocator();
if (@hasDecl(S, "deinit")) {
// And it has a deinit, we'll call it
switch (@typeInfo(@TypeOf(S.deinit)).@"fn".params.len) {
1 => value.deinit(),
2 => value.deinit(self._page),
else => @compileLog(@typeName(S) ++ " has an invalid deinit function"),
}
}
allocator.destroy(value);
}
fn destroyChain(
self: *Factory,
value: anytype,
comptime first: bool,
old_size: usize,
old_align: std.mem.Alignment,
) void {
const S = reflect.Struct(@TypeOf(value));
const allocator = self._slab.allocator();
// aligns the old size to the alignment of this element
const current_size = std.mem.alignForward(usize, old_size, @alignOf(S));
const alignment = std.mem.Alignment.fromByteUnits(@alignOf(S));
const new_align = std.mem.Alignment.max(old_align, alignment);
const new_size = current_size + @sizeOf(S);
// This is initially called from a deinit. We don't want to call that
// same deinit. So when this is the first time destroyChain is called
// we don't call deinit (because we're in that deinit)
@@ -255,44 +377,33 @@ fn destroyChain(self: *Factory, value: anytype, comptime first: bool) void {
}
if (@hasField(S, "_proto")) {
self.destroyChain(value._proto, false);
self.destroyChain(value._proto, false, new_size, new_align);
} else if (@hasDecl(S, "JsApi")) {
// Doesn't have a _proto, but has a JsApi.
if (self._page.js.removeTaggedMapping(@intFromPtr(value))) |tagged| {
allocator.destroy(tagged);
}
}
} else {
// no proto so this is the head of the chain.
// we use this as the ptr to the start of the chain.
// and we have summed up the length.
assert(@hasDecl(S, "_prototype_root"));
// Leaf types are allowed by be placed directly within their _proto
// (which makes sense when the @sizeOf(Leaf) == 8). These don't need to
// be (cannot be) freed. But we'll still free the chain.
if (comptime wasAllocated(S)) {
allocator.destroy(value);
const memory_ptr: [*]const u8 = @ptrCast(value);
const len = std.mem.alignForward(usize, new_size, new_align.toByteUnits());
allocator.free(memory_ptr[0..len]);
}
}
fn wasAllocated(comptime S: type) bool {
// Whether it's heap allocate or not, we should have a pointer.
// (If it isn't heap allocated, it'll be a pointer from the proto's type
// e.g. &html._type.title)
if (!@hasField(S, "_proto")) {
// a root is always on the heap.
return true;
pub fn createT(self: *Factory, comptime T: type) !*T {
const allocator = self._slab.allocator();
return try allocator.create(T);
}
// the _proto type
const P = reflect.Struct(std.meta.fieldInfo(S, ._proto).type);
// the _proto._type type (the parent's _type union)
const U = std.meta.fieldInfo(P, ._type).type;
inline for (@typeInfo(U).@"union".fields) |field| {
if (field.type == S) {
// One of the types in the proto's _type union is this non-pointer
// structure, so it isn't heap allocted.
return false;
}
}
return true;
pub fn create(self: *Factory, value: anytype) !*@TypeOf(value) {
const ptr = try self.createT(@TypeOf(value));
ptr.* = value;
return ptr;
}
fn unionInit(comptime T: type, value: anytype) T {
@@ -316,15 +427,3 @@ fn unionFieldName(comptime T: type, comptime V: type) []const u8 {
}
@compileError(@typeName(V) ++ " is not a valid type for " ++ @typeName(T) ++ ".type");
}
fn fieldIsPointer(comptime T: type, comptime V: type) bool {
inline for (@typeInfo(T).@"union".fields) |field| {
if (field.type == V) {
return false;
}
if (field.type == *V) {
return true;
}
}
@compileError(@typeName(V) ++ " is not a valid type for " ++ @typeName(T) ++ ".type");
}

View File

@@ -177,7 +177,9 @@ pub fn deinit(self: *Page) void {
// Uncomment if you want slab statistics to print.
// const stats = self._factory._slab.getStats(self.arena) catch unreachable;
// stats.print() catch unreachable;
// var buffer: [256]u8 = undefined;
// var stream = std.fs.File.stderr().writer(&buffer).interface;
// stats.print(&stream) catch unreachable;
}
self.js.deinit();

View File

@@ -26,7 +26,9 @@ const Page = @import("../Page.zig");
/// https://developer.mozilla.org/en-US/docs/Web/API/Blob
const Blob = @This();
const _prototype_root = true;
_type: Type,
/// Immutable slice of blob.
/// Note that another blob may hold a pointer/slice to this,
/// so its better to leave the deallocation of it to arena allocator.

View File

@@ -26,7 +26,9 @@ const String = @import("../../string.zig").String;
pub const Event = @This();
const _prototype_root = true;
_type: Type,
_bubbles: bool = false,
_cancelable: bool = false,
_composed: bool = false,

View File

@@ -26,6 +26,7 @@ const Event = @import("Event.zig");
const EventTarget = @This();
const _prototype_root = true;
_type: Type,
pub const Type = union(enum) {

View File

@@ -67,36 +67,36 @@ pub fn construct(page: *Page) !*Element {
}
pub const Type = union(enum) {
anchor: Anchor,
body: Body,
br: BR,
button: Button,
anchor: *Anchor,
body: *Body,
br: *BR,
button: *Button,
custom: *Custom,
dialog: Dialog,
div: Div,
form: Form,
dialog: *Dialog,
div: *Div,
form: *Form,
generic: *Generic,
heading: *Heading,
head: Head,
html: Html,
hr: HR,
img: Image,
iframe: IFrame,
head: *Head,
html: *Html,
hr: *HR,
img: *Image,
iframe: *IFrame,
input: *Input,
li: LI,
link: Link,
meta: Meta,
ol: OL,
li: *LI,
link: *Link,
meta: *Meta,
ol: *OL,
option: *Option,
p: Paragraph,
p: *Paragraph,
script: *Script,
select: Select,
slot: Slot,
style: Style,
select: *Select,
slot: *Slot,
style: *Style,
template: *Template,
text_area: *TextArea,
title: Title,
ul: UL,
title: *Title,
ul: *UL,
unknown: *Unknown,
};

View File

@@ -35,7 +35,7 @@ _on_progress: ?js.Function = null,
_on_timeout: ?js.Function = null,
pub const Type = union(enum) {
request: @import("XMLHttpRequest.zig"),
request: *@import("XMLHttpRequest.zig"),
// TODO: xml_http_request_upload
};

View File

@@ -258,47 +258,47 @@ pub const SlabAllocator = struct {
utilization_ratio: f64,
slabs: []const Slab.Stats,
pub fn print(self: *const Stats) !void {
std.debug.print("\n", .{});
std.debug.print("\n=== Slab Allocator Statistics ===\n", .{});
std.debug.print("Overall Memory:\n", .{});
std.debug.print(" Total allocated: {} bytes ({d:.2} MB)\n", .{
pub fn print(self: *const Stats, stream: *std.io.Writer) !void {
try stream.print("\n", .{});
try stream.print("\n=== Slab Allocator Statistics ===\n", .{});
try stream.print("Overall Memory:\n", .{});
try stream.print(" Total allocated: {} bytes ({d:.2} MB)\n", .{
self.total_allocated_bytes,
@as(f64, @floatFromInt(self.total_allocated_bytes)) / 1_048_576.0,
});
std.debug.print(" In use: {} bytes ({d:.2} MB)\n", .{
try stream.print(" In use: {} bytes ({d:.2} MB)\n", .{
self.bytes_in_use,
@as(f64, @floatFromInt(self.bytes_in_use)) / 1_048_576.0,
});
std.debug.print(" Free: {} bytes ({d:.2} MB)\n", .{
try stream.print(" Free: {} bytes ({d:.2} MB)\n", .{
self.bytes_free,
@as(f64, @floatFromInt(self.bytes_free)) / 1_048_576.0,
});
std.debug.print("\nOverall Structure:\n", .{});
std.debug.print(" Slab Count: {}\n", .{self.slab_count});
std.debug.print(" Total chunks: {}\n", .{self.total_chunks});
std.debug.print(" Total slots: {}\n", .{self.total_slots});
std.debug.print(" Slots in use: {}\n", .{self.slots_in_use});
std.debug.print(" Slots free: {}\n", .{self.slots_free});
try stream.print("\nOverall Structure:\n", .{});
try stream.print(" Slab Count: {}\n", .{self.slab_count});
try stream.print(" Total chunks: {}\n", .{self.total_chunks});
try stream.print(" Total slots: {}\n", .{self.total_slots});
try stream.print(" Slots in use: {}\n", .{self.slots_in_use});
try stream.print(" Slots free: {}\n", .{self.slots_free});
std.debug.print("\nOverall Efficiency:\n", .{});
std.debug.print(" Utilization: {d:.1}%\n", .{self.utilization_ratio * 100.0});
std.debug.print(" Fragmentation: {d:.1}%\n", .{self.fragmentation_ratio * 100.0});
try stream.print("\nOverall Efficiency:\n", .{});
try stream.print(" Utilization: {d:.1}%\n", .{self.utilization_ratio * 100.0});
try stream.print(" Fragmentation: {d:.1}%\n", .{self.fragmentation_ratio * 100.0});
if (self.slabs.len > 0) {
std.debug.print("\nPer-Slab Breakdown:\n", .{});
std.debug.print(
try stream.print("\nPer-Slab Breakdown:\n", .{});
try stream.print(
" {s:>5} | {s:>4} | {s:>6} | {s:>6} | {s:>6} | {s:>10} | {s:>6}\n",
.{ "Size", "Algn", "Chunks", "Slots", "InUse", "Bytes", "Util%" },
);
std.debug.print(
try stream.print(
" {s:-<5}-+-{s:-<4}-+-{s:-<6}-+-{s:-<6}-+-{s:-<6}-+-{s:-<10}-+-{s:-<6}\n",
.{ "", "", "", "", "", "", "" },
);
for (self.slabs) |slab| {
std.debug.print(" {d:5} | {d:4} | {d:6} | {d:6} | {d:6} | {d:10} | {d:5.1}%\n", .{
try stream.print(" {d:5} | {d:4} | {d:6} | {d:6} | {d:6} | {d:10} | {d:5.1}%\n", .{
slab.key.size,
@intFromEnum(slab.key.alignment),
slab.chunk_count,
@@ -376,23 +376,25 @@ pub const SlabAllocator = struct {
const self: *Self = @ptrCast(@alignCast(ctx));
_ = ret_addr;
const aligned_len = std.mem.alignForward(usize, len, alignment.toByteUnits());
const list_gop = self.slabs.getOrPut(
self.child_allocator,
SlabKey{ .size = len, .alignment = alignment },
SlabKey{ .size = aligned_len, .alignment = alignment },
) catch return null;
if (!list_gop.found_existing) {
list_gop.value_ptr.* = Slab.init(
self.child_allocator,
alignment,
len,
aligned_len,
self.max_slot_count,
) catch return null;
}
const list = list_gop.value_ptr;
const buf = list.alloc(self.child_allocator) catch return null;
return buf.ptr;
return buf[0..len].ptr;
}
fn free(ctx: *anyopaque, memory: []u8, alignment: Alignment, ret_addr: usize) void {
@@ -401,8 +403,9 @@ pub const SlabAllocator = struct {
const ptr = memory.ptr;
const len = memory.len;
const aligned_len = std.mem.alignForward(usize, len, alignment.toByteUnits());
const list = self.slabs.getPtr(.{ .size = len, .alignment = alignment }).?;
const list = self.slabs.getPtr(.{ .size = aligned_len, .alignment = alignment }).?;
list.free(ptr);
}
};
@@ -822,3 +825,39 @@ test "slab allocator - different size classes don't interfere" {
allocator.free(ptr_128);
allocator.free(ptr_64_again);
}
test "slab allocator - 16-byte alignment" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
// Request 16-byte aligned memory
const ptr = try allocator.alignedAlloc(u8, .@"16", 152);
defer allocator.free(ptr);
// Verify alignment
const addr = @intFromPtr(ptr.ptr);
try testing.expect(addr % 16 == 0);
// Make sure we can use it
@memset(ptr, 0xFF);
}
test "slab allocator - various alignments" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
const alignments = [_]std.mem.Alignment{ .@"1", .@"2", .@"4", .@"8", .@"16" };
inline for (alignments) |alignment| {
const ptr = try allocator.alignedAlloc(u8, alignment, 100);
defer allocator.free(ptr);
const addr = @intFromPtr(ptr.ptr);
const align_value = alignment.toByteUnits();
try testing.expect(addr % align_value == 0);
}
}