When using CDP, we poll the HTTP clients along with the CDP socket. Because this
polling can be long, we first process any pending message. This can end up
processing _all_ messages, in which case the poll will block for a long time.
This change makes it so that when the initial processing processes 1+ message,
we do not poll, but rather return. This allows the page lifecycle to be
processed normally (and not just blocking on poll, waiting for the CDP client
to send data).
Currently, this hooks a single log.Interceptor into the logging framework, but
changing it to take a list shouldn't be too hard. Biggest issue is who will own
it, as we'd need an allocator to maintain a list / lookup (which log doesn't
currently have).
Uses logFmt format, and, for now, always filters out debug messages and a few
particularly verbose scopes.
This Pr largely tightens up a lot of the code. 'v8' is no longer imported
outside of js. A number of helper functions have been moved to the js.Context.
For example, js.Function.getName used to call:
```zig
return js.valueToString(allocator, name, self.context.isolate, self.context.v8_context);
```
It now calls:
```zig
return self.context.valueToString(name, .{ .allocator = allocator });
```
Page.main_context has been renamed to `Page.js`. This, in combination with new
promise helpers, turns:
```zig
const resolver = page.main_context.createPromiseResolver();
try resolver.resolve({});
return resolver.promise();
```
into:
```zig
return page.js.resolvePromise({});
```
Renames JsContext -> js.Context, JsObject -> js.Object and JsThis -> js.This
which is more consistent with the other types. The JsObject -> js.Object is
the reason so many files were touched.
This is still a [messy] transition, with more refactoring planned to clean it
up.
chromedp expects the nodeId starts to 1.
A start to 0 make it enter in infinite loop b/c it expects the Go's
default int, ie 0, to be nil from a map to stop the loop.
If the 0 index is set, it will loop...
There is some risk to this change. The first is that I made a mistake. The
other is that one of the APIs that doesn't currently return an error changes
in the future.
CDP currently assumes that if we get a page-related notification (like a
request interception, or page lifecycle event), then we must have a session
and page.
But, Target.detachFromTarget can remove the session from the BrowserContext
while still having the page run (I wonder if we should stop the page at this
point??). So, remove these assumptions and make sure we have a page/session
in the handling of page events.
Most CDP drivers have a mechanism to wait for idle network, or an almost idle
network (sometimes called networkIdle2). These are events the browser must emit.
The page will now emit `networkIdle` when we are reasonably sure there's no more
network activity (this requires some slight changes to request interception,
since, I believe, intercepted requests should be considered).
`networkAlmostIdle` is currently _always_ emitted prior to emitting
`networkIdle`. We should tweak this but I can't, at a glance, think of a great
heuristic for when this should be emitted.