// Copyright (C) 2023-2024 Lightpanda (Selecy SAS) // // Francis Bouvier // Pierre Tachoire // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as // published by the Free Software Foundation, either version 3 of the // License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see . const std = @import("std"); const builtin = @import("builtin"); const net = std.net; const posix = std.posix; const Allocator = std.mem.Allocator; const ArenaAllocator = std.heap.ArenaAllocator; const jsruntime = @import("jsruntime"); const Completion = jsruntime.IO.Completion; const AcceptError = jsruntime.IO.AcceptError; const RecvError = jsruntime.IO.RecvError; const SendError = jsruntime.IO.SendError; const CloseError = jsruntime.IO.CloseError; const CancelError = jsruntime.IO.CancelOneError; const TimeoutError = jsruntime.IO.TimeoutError; const CDP = @import("cdp/cdp.zig").CDP; const TimeoutCheck = std.time.ns_per_ms * 100; const log = std.log.scoped(.server); const MAX_HTTP_REQUEST_SIZE = 2048; // max message size // +14 for max websocket payload overhead // +140 for the max control packet that might be interleaved in a message const MAX_MESSAGE_SIZE = 256 * 1024 + 14; pub const Client = ClientT(*Server, CDP); const Server = struct { allocator: Allocator, loop: *jsruntime.Loop, current_client_id: usize = 0, // internal fields listener: posix.socket_t, client: ?*Client = null, timeout: u64, // a memory poor for our Send objects send_pool: std.heap.MemoryPool(Send), // a memory poor for our Clietns client_pool: std.heap.MemoryPool(Client), completion_state_pool: std.heap.MemoryPool(CompletionState), // I/O fields close_completion: Completion, accept_completion: Completion, // The response to send on a GET /json/version request json_version_response: []const u8, fn deinit(self: *Server) void { self.send_pool.deinit(); self.client_pool.deinit(); self.completion_state_pool.deinit(); self.allocator.free(self.json_version_response); } fn queueAccept(self: *Server) void { log.info("accepting new conn...", .{}); self.loop.io.accept( *Server, self, callbackAccept, &self.accept_completion, self.listener, ); } fn callbackAccept( self: *Server, completion: *Completion, result: AcceptError!posix.socket_t, ) void { std.debug.assert(self.client == null); std.debug.assert(completion == &self.accept_completion); self.doCallbackAccept(result) catch |err| { log.err("accept error: {any}", .{err}); self.queueAccept(); }; } fn doCallbackAccept( self: *Server, result: AcceptError!posix.socket_t, ) !void { const socket = try result; const client = try self.client_pool.create(); errdefer self.client_pool.destroy(client); self.current_client_id += 1; client.* = Client.init(socket, self); self.client = client; log.info("client connected", .{}); try self.queueRead(); try self.queueTimeout(); } fn queueTimeout(self: *Server) !void { const cs = try self.createCompletionState(); self.loop.io.timeout( *Server, self, callbackTimeout, &cs.completion, TimeoutCheck, ); } fn callbackTimeout( self: *Server, completion: *Completion, result: TimeoutError!void, ) void { const cs: *CompletionState = @alignCast( @fieldParentPtr("completion", completion), ); defer self.completion_state_pool.destroy(cs); if (cs.client_id != self.current_client_id) { // completion for a previously-connected client return; } const client = self.client orelse return; if (result) |_| { if (now().since(client.last_active) > self.timeout) { // close current connection log.debug("conn timeout, closing...", .{}); client.close(.timeout); return; } } else |err| { log.err("timeout error: {any}", .{err}); } // We re-queue this if the timeout hasn't been exceeded or on some // very unlikely IO timeout error. // AKA: we don't requeue this if the connection timed out and we // closed the connection.s self.queueTimeout() catch |err| { log.err("queueTimeout error: {any}", .{err}); }; } fn queueRead(self: *Server) !void { var client = self.client orelse return; const cs = try self.createCompletionState(); self.loop.io.recv( *Server, self, callbackRead, &cs.completion, client.socket, client.readBuf(), ); } fn callbackRead( self: *Server, completion: *Completion, result: RecvError!usize, ) void { const cs: *CompletionState = @alignCast( @fieldParentPtr("completion", completion), ); defer self.completion_state_pool.destroy(cs); if (cs.client_id != self.current_client_id) { // completion for a previously-connected client return; } var client = self.client orelse return; const size = result catch |err| { log.err("read error: {any}", .{err}); client.close(null); return; }; if (size == 0) { if (self.client != null) { self.client = null; } self.queueAccept(); return; } const more = client.processData(size) catch |err| { log.err("Client Processing Error: {any}\n", .{err}); return; }; // if more == false, the client is disconnecting if (more) { self.queueRead() catch |err| { log.err("queueRead error: {any}", .{err}); client.close(null); }; } } fn queueSend( self: *Server, socket: posix.socket_t, arena: ?ArenaAllocator, data: []const u8, ) !void { const sd = try self.send_pool.create(); errdefer self.send_pool.destroy(sd); const cs = try self.createCompletionState(); errdefer self.completion_state_pool.destroy(cs); sd.* = .{ .unsent = data, .server = self, .socket = socket, .arena = arena, .completion_state = cs, }; sd.queueSend(); } fn queueClose(self: *Server, socket: posix.socket_t) void { self.loop.io.close( *Server, self, callbackClose, &self.close_completion, socket, ); var client = self.client.?; client.deinit(); self.client_pool.destroy(client); self.client = null; } fn callbackClose(self: *Server, completion: *Completion, _: CloseError!void) void { std.debug.assert(completion == &self.close_completion); self.queueAccept(); } fn createCompletionState(self: *Server) !*CompletionState { var cs = try self.completion_state_pool.create(); cs.client_id = self.current_client_id; cs.completion = undefined; return cs; } }; const CompletionState = struct { client_id: usize, completion: Completion, }; // I/O Send // -------- // NOTE: to allow concurrent send we create each time a dedicated context // (with its own completion), allocated on the heap. // After the send (on the sendCbk) the dedicated context will be destroy // and the data slice will be free. const Send = struct { // Any unsent data we have. unsent: []const u8, server: *Server, socket: posix.socket_t, completion_state: *CompletionState, // If we need to free anything when we're done arena: ?ArenaAllocator, fn deinit(self: *Send) void { if (self.arena) |arena| { arena.deinit(); } var server = self.server; server.completion_state_pool.destroy(self.completion_state); server.send_pool.destroy(self); } fn queueSend(self: *Send) void { self.server.loop.io.send( *Send, self, sendCallback, &self.completion_state.completion, self.socket, self.unsent, ); } fn sendCallback(self: *Send, _: *Completion, result: SendError!usize) void { const server = self.server; const cs = self.completion_state; if (cs.client_id != server.current_client_id) { // completion for a previously-connected client self.deinit(); return; } const sent = result catch |err| { log.info("send error: {any}", .{err}); if (server.client) |client| { client.close(null); } self.deinit(); return; }; if (sent == self.unsent.len) { self.deinit(); return; } // partial send, re-queue a send for whatever we have left self.unsent = self.unsent[sent..]; self.queueSend(); } }; // Client // -------- // This is a generic only so that it can be unit tested. Normally, S == Server // and when we send a message, we'll use server.send(...) to send via the server's // IO loop. During tests, we can inject a simple mock to record (and then verify) // the send message fn ClientT(comptime S: type, comptime C: type) type { const EMPTY_PONG = [_]u8{ 138, 0 }; // CLOSE, 2 length, code const CLOSE_NORMAL = [_]u8{ 136, 2, 3, 232 }; // code: 1000 const CLOSE_TOO_BIG = [_]u8{ 136, 2, 3, 241 }; // 1009 const CLOSE_PROTOCOL_ERROR = [_]u8{ 136, 2, 3, 234 }; //code: 1002 // "private-use" close codes must be from 4000-49999 const CLOSE_TIMEOUT = [_]u8{ 136, 2, 15, 160 }; // code: 4000 return struct { // The client is initially serving HTTP requests but, under normal circumstances // should eventually be upgraded to a websocket connections mode: Mode, // The CDP instance that processes messages from this client // (a generic so we can test with a mock // null until mode == .websocket cdp: ?C, // Our Server (a generic so we can test with a mock) server: S, reader: Reader, socket: posix.socket_t, last_active: std.time.Instant, const Mode = enum { http, websocket, }; const Self = @This(); fn init(socket: posix.socket_t, server: S) Self { return .{ .cdp = null, .mode = .http, .socket = socket, .server = server, .last_active = now(), .reader = .{ .allocator = server.allocator }, }; } pub fn deinit(self: *Self) void { self.reader.deinit(); if (self.cdp) |*cdp| { cdp.deinit(); } } pub fn close(self: *Self, close_code: ?CloseCode) void { if (close_code) |code| { if (self.mode == .websocket) { switch (code) { .timeout => self.send(&CLOSE_TIMEOUT) catch {}, } } } self.server.queueClose(self.socket); } fn readBuf(self: *Self) []u8 { return self.reader.readBuf(); } fn processData(self: *Self, len: usize) !bool { self.last_active = now(); self.reader.len += len; switch (self.mode) { .http => { try self.processHTTPRequest(); return true; }, .websocket => return self.processWebsocketMessage(), } } fn processHTTPRequest(self: *Self) !void { std.debug.assert(self.reader.pos == 0); const request = self.reader.buf[0..self.reader.len]; errdefer self.server.queueClose(self.socket); if (request.len > MAX_HTTP_REQUEST_SIZE) { self.writeHTTPErrorResponse(413, "Request too large"); return error.RequestTooLarge; } // we're only expecting [body-less] GET requests. if (std.mem.endsWith(u8, request, "\r\n\r\n") == false) { // we need more data, put any more data here return; } self.handleHTTPRequest(request) catch |err| { switch (err) { error.NotFound => self.writeHTTPErrorResponse(404, "Not found"), error.InvalidRequest => self.writeHTTPErrorResponse(400, "Invalid request"), error.InvalidProtocol => self.writeHTTPErrorResponse(400, "Invalid HTTP protocol"), error.MissingHeaders => self.writeHTTPErrorResponse(400, "Missing required header"), error.InvalidUpgradeHeader => self.writeHTTPErrorResponse(400, "Unsupported upgrade type"), error.InvalidVersionHeader => self.writeHTTPErrorResponse(400, "Invalid websocket version"), error.InvalidConnectionHeader => self.writeHTTPErrorResponse(400, "Invalid connection header"), else => { log.err("error processing HTTP request: {any}", .{err}); self.writeHTTPErrorResponse(500, "Internal Server Error"); }, } return err; }; // the next incoming data can go to the front of our buffer self.reader.len = 0; } fn handleHTTPRequest(self: *Self, request: []u8) !void { if (request.len < 18) { // 18 is [generously] the smallest acceptable HTTP request return error.InvalidRequest; } if (std.mem.eql(u8, request[0..4], "GET ") == false) { return error.NotFound; } const url_end = std.mem.indexOfScalarPos(u8, request, 4, ' ') orelse { return error.InvalidRequest; }; const url = request[4..url_end]; if (std.mem.eql(u8, url, "/")) { return self.upgradeConnection(request); } if (std.mem.eql(u8, url, "/json/version")) { return self.send(self.server.json_version_response); } return error.NotFound; } fn upgradeConnection(self: *Self, request: []u8) !void { // our caller already confirmed that we have a trailing \r\n\r\n const request_line_end = std.mem.indexOfScalar(u8, request, '\r') orelse unreachable; const request_line = request[0..request_line_end]; if (!std.ascii.endsWithIgnoreCase(request_line, "http/1.1")) { return error.InvalidProtocol; } // we need to extract the sec-websocket-key value var key: []const u8 = ""; // we need to make sure that we got all the necessary headers + values var required_headers: u8 = 0; // can't std.mem.split because it forces the iterated value to be const // (we could @constCast...) var buf = request[request_line_end + 2 ..]; while (buf.len > 4) { const index = std.mem.indexOfScalar(u8, buf, '\r') orelse unreachable; const separator = std.mem.indexOfScalar(u8, buf[0..index], ':') orelse return error.InvalidRequest; const name = std.mem.trim(u8, toLower(buf[0..separator]), &std.ascii.whitespace); const value = std.mem.trim(u8, buf[(separator + 1)..index], &std.ascii.whitespace); if (std.mem.eql(u8, name, "upgrade")) { if (!std.ascii.eqlIgnoreCase("websocket", value)) { return error.InvalidUpgradeHeader; } required_headers |= 1; } else if (std.mem.eql(u8, name, "sec-websocket-version")) { if (value.len != 2 or value[0] != '1' or value[1] != '3') { return error.InvalidVersionHeader; } required_headers |= 2; } else if (std.mem.eql(u8, name, "connection")) { // find if connection header has upgrade in it, example header: // Connection: keep-alive, Upgrade if (std.ascii.indexOfIgnoreCase(value, "upgrade") == null) { return error.InvalidConnectionHeader; } required_headers |= 4; } else if (std.mem.eql(u8, name, "sec-websocket-key")) { key = value; required_headers |= 8; } const next = index + 2; buf = buf[next..]; } if (required_headers != 15) { return error.MissingHeaders; } // our caller has already made sure this request ended in \r\n\r\n // so it isn't something we need to check again var arena = ArenaAllocator.init(self.server.allocator); errdefer arena.deinit(); const response = blk: { // Response to an ugprade request is always this, with // the Sec-Websocket-Accept value a spacial sha1 hash of the // request "sec-websocket-version" and a magic value. const template = "HTTP/1.1 101 Switching Protocols\r\n" ++ "Upgrade: websocket\r\n" ++ "Connection: upgrade\r\n" ++ "Sec-Websocket-Accept: 0000000000000000000000000000\r\n\r\n"; // The response will be sent via the IO Loop and thus has to have its // own lifetime. const res = try arena.allocator().dupe(u8, template); // magic response const key_pos = res.len - 32; var h: [20]u8 = undefined; var hasher = std.crypto.hash.Sha1.init(.{}); hasher.update(key); // websocket spec always used this value hasher.update("258EAFA5-E914-47DA-95CA-C5AB0DC85B11"); hasher.final(&h); _ = std.base64.standard.Encoder.encode(res[key_pos .. key_pos + 28], h[0..]); break :blk res; }; self.mode = .websocket; self.cdp = C.init(self.server.allocator, self, self.server.loop); return self.sendAlloc(arena, response); } fn writeHTTPErrorResponse(self: *Self, comptime status: u16, comptime body: []const u8) void { const response = std.fmt.comptimePrint( "HTTP/1.1 {d} \r\nConnection: Close\r\nContent-Length: {d}\r\n\r\n{s}", .{ status, body.len, body }, ); // we're going to close this connection anyways, swallowing any // error seems safe self.send(response) catch {}; } fn processWebsocketMessage(self: *Self) !bool { errdefer self.server.queueClose(self.socket); var reader = &self.reader; while (true) { const msg = reader.next() catch |err| { switch (err) { error.TooLarge => self.send(&CLOSE_TOO_BIG) catch {}, error.NotMasked => self.send(&CLOSE_PROTOCOL_ERROR) catch {}, error.ReservedFlags => self.send(&CLOSE_PROTOCOL_ERROR) catch {}, error.InvalidMessageType => self.send(&CLOSE_PROTOCOL_ERROR) catch {}, error.ControlTooLarge => self.send(&CLOSE_PROTOCOL_ERROR) catch {}, error.InvalidContinuation => self.send(&CLOSE_PROTOCOL_ERROR) catch {}, error.NestedFragementation => self.send(&CLOSE_PROTOCOL_ERROR) catch {}, error.OutOfMemory => {}, // don't borther trying to send an error in this case } return err; } orelse break; switch (msg.type) { .pong => {}, .ping => try self.sendPong(msg.data), .close => { self.send(&CLOSE_NORMAL) catch {}; self.server.queueClose(self.socket); return false; }, .text, .binary => if (self.cdp.?.handleMessage(msg.data) == false) { self.close(null); return false; }, } if (msg.cleanup_fragment) { reader.cleanup(); } } // We might have read part of the next message. Our reader potentially // has to move data around in its buffer to make space. reader.compact(); return true; } fn sendPong(self: *Self, data: []const u8) !void { if (data.len == 0) { return self.send(&EMPTY_PONG); } var header_buf: [10]u8 = undefined; const header = websocketHeader(&header_buf, .pong, data.len); var arena = ArenaAllocator.init(self.server.allocator); errdefer arena.deinit(); var framed = try arena.allocator().alloc(u8, header.len + data.len); @memcpy(framed[0..header.len], header); @memcpy(framed[header.len..], data); return self.sendAlloc(arena, framed); } // called by CDP // Websocket frames have a variable lenght header. For server-client, // it could be anywhere from 2 to 10 bytes. Our IO.Loop doesn't have // writev, so we need to get creative. We'll JSON serialize to a // buffer, where the first 10 bytes are reserved. We can then backfill // the header and send the slice. pub fn sendJSON(self: *Self, message: anytype, opts: std.json.StringifyOptions) !void { var arena = ArenaAllocator.init(self.server.allocator); errdefer arena.deinit(); const allocator = arena.allocator(); var buf: std.ArrayListUnmanaged(u8) = .{}; try buf.ensureTotalCapacity(allocator, 512); // reserve space for the maximum possible header buf.appendSliceAssumeCapacity(&.{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }); try std.json.stringify(message, opts, buf.writer(allocator)); const framed = fillWebsocketHeader(buf); return self.sendAlloc(arena, framed); } pub fn sendJSONRaw( self: *Self, arena: ArenaAllocator, buf: std.ArrayListUnmanaged(u8), ) !void { // Dangerous API!. We assume the caller has reserved the first 10 // bytes in `buf`. const framed = fillWebsocketHeader(buf); return self.sendAlloc(arena, framed); } fn send(self: *Self, data: []const u8) !void { return self.server.queueSend(self.socket, null, data); } fn sendAlloc(self: *Self, arena: ArenaAllocator, data: []const u8) !void { return self.server.queueSend(self.socket, arena, data); } }; } // WebSocket message reader. Given websocket message, acts as an iterator that // can return zero or more Messages. When next returns null, any incomplete // message will remain in reader.data const Reader = struct { allocator: Allocator, // position in buf of the start of the next message pos: usize = 0, // position in buf up until where we have valid data // (any new reads must be placed after this) len: usize = 0, // we add 140 to allow 1 control message (ping/pong/close) to be // fragmented into a normal message. buf: [MAX_MESSAGE_SIZE + 140]u8 = undefined, fragments: ?Fragments = null, fn deinit(self: *Reader) void { self.cleanup(); } fn cleanup(self: *Reader) void { if (self.fragments) |*f| { f.message.deinit(self.allocator); self.fragments = null; } } fn readBuf(self: *Reader) []u8 { // We might have read a partial http or websocket message. // Subsequent reads must read from where we left off. return self.buf[self.len..]; } fn next(self: *Reader) !?Message { LOOP: while (true) { var buf = self.buf[self.pos..self.len]; const length_of_len, const message_len = extractLengths(buf) orelse { // we don't have enough bytes return null; }; const byte1 = buf[0]; if (byte1 & 112 != 0) { return error.ReservedFlags; } if (buf[1] & 128 != 128) { // client -> server messages _must_ be masked return error.NotMasked; } var is_control = false; var is_continuation = false; var message_type: Message.Type = undefined; switch (byte1 & 15) { 0 => is_continuation = true, 1 => message_type = .text, 2 => message_type = .binary, 8 => { is_control = true; message_type = .close; }, 9 => { is_control = true; message_type = .ping; }, 10 => { is_control = true; message_type = .pong; }, else => return error.InvalidMessageType, } if (is_control) { if (message_len > 125) { return error.ControlTooLarge; } } else if (message_len > MAX_MESSAGE_SIZE) { return error.TooLarge; } if (buf.len < message_len) { return null; } // prefix + length_of_len + mask const header_len = 2 + length_of_len + 4; const payload = buf[header_len..message_len]; mask(buf[header_len - 4 .. header_len], payload); // whatever happens after this, we know where the next message starts self.pos += message_len; const fin = byte1 & 128 == 128; if (is_continuation) { const fragments = &(self.fragments orelse return error.InvalidContinuation); if (fragments.message.items.len + message_len > MAX_MESSAGE_SIZE) { return error.TooLarge; } try fragments.message.appendSlice(self.allocator, payload); if (fin == false) { // maybe we have more parts of the message waiting continue :LOOP; } // this continuation is done! return .{ .type = fragments.type, .data = fragments.message.items, .cleanup_fragment = true, }; } const can_be_fragmented = message_type == .text or message_type == .binary; if (self.fragments != null and can_be_fragmented) { // if this isn't a continuation, then we can't have fragements return error.NestedFragementation; } if (fin == false) { if (can_be_fragmented == false) { return error.InvalidContinuation; } // not continuation, and not fin. It has to be the first message // in a fragemented message. var fragments = Fragments{ .message = .{}, .type = message_type }; try fragments.message.appendSlice(self.allocator, payload); self.fragments = fragments; continue :LOOP; } return .{ .data = payload, .type = message_type, .cleanup_fragment = false, }; } } fn extractLengths(buf: []const u8) ?struct { usize, usize } { if (buf.len < 2) { return null; } const length_of_len: usize = switch (buf[1] & 127) { 126 => 2, 127 => 8, else => 0, }; if (buf.len < length_of_len + 2) { // we definitely don't have enough buf yet return null; } const message_len = switch (length_of_len) { 2 => @as(u16, @intCast(buf[3])) | @as(u16, @intCast(buf[2])) << 8, 8 => @as(u64, @intCast(buf[9])) | @as(u64, @intCast(buf[8])) << 8 | @as(u64, @intCast(buf[7])) << 16 | @as(u64, @intCast(buf[6])) << 24 | @as(u64, @intCast(buf[5])) << 32 | @as(u64, @intCast(buf[4])) << 40 | @as(u64, @intCast(buf[3])) << 48 | @as(u64, @intCast(buf[2])) << 56, else => buf[1] & 127, } + length_of_len + 2 + 4; // +2 for header prefix, +4 for mask; return .{ length_of_len, message_len }; } // This is called after we've processed complete websocket messages (this // only applies to websocket messages). // There are three cases: // 1 - We don't have any incomplete data (for a subsequent message) in buf. // This is the easier to handle, we can set pos & len to 0. // 2 - We have part of the next message, but we know it'll fit in the // remaining buf. We don't need to do anything // 3 - We have part of the next message, but either it won't fight into the // remaining buffer, or we don't know (because we don't have enough // of the header to tell the length). We need to "compact" the buffer fn compact(self: *Reader) void { const pos = self.pos; const len = self.len; std.debug.assert(pos <= len); // how many (if any) partial bytes do we have const partial_bytes = len - pos; if (partial_bytes == 0) { // We have no partial bytes. Setting these to 0 ensures that we // get the best utilization of our buffer self.pos = 0; self.len = 0; return; } const partial = self.buf[pos..len]; // If we have enough bytes of the next message to tell its length // we'll be able to figure out whether we need to do anything or not. if (extractLengths(partial)) |length_meta| { const next_message_len = length_meta.@"1"; // if this isn't true, then we have a full message and it // should have been processed. std.debug.assert(next_message_len > partial_bytes); const missing_bytes = next_message_len - partial_bytes; const free_space = self.buf.len - len; if (missing_bytes < free_space) { // we have enough space in our buffer, as is, return; } } // We're here because we either don't have enough bytes of the next // message, or we know that it won't fit in our buffer as-is. std.mem.copyForwards(u8, &self.buf, partial); self.pos = 0; self.len = partial_bytes; } }; const Fragments = struct { type: Message.Type, message: std.ArrayListUnmanaged(u8), }; const Message = struct { type: Type, data: []const u8, cleanup_fragment: bool, const Type = enum { text, binary, close, ping, pong, }; }; // These are the only websocket types that we're currently sending const OpCode = enum(u8) { text = 128 | 1, close = 128 | 8, pong = 128 | 10, }; const CloseCode = enum { timeout, }; fn fillWebsocketHeader(buf: std.ArrayListUnmanaged(u8)) []const u8 { // can't use buf[0..10] here, because the header length // is variable. If it's just 2 bytes, for example, we need the // framed message to be: // h1, h2, data // If we use buf[0..10], we'd get: // h1, h2, 0, 0, 0, 0, 0, 0, 0, 0, data var header_buf: [10]u8 = undefined; // -10 because we reserved 10 bytes for the header above const header = websocketHeader(&header_buf, .text, buf.items.len - 10); const start = 10 - header.len; const message = buf.items; @memcpy(message[start..10], header); return message[start..]; } // makes the assumption that our caller reserved the first // 10 bytes for the header fn websocketHeader(buf: []u8, op_code: OpCode, payload_len: usize) []const u8 { std.debug.assert(buf.len == 10); const len = payload_len; buf[0] = 128 | @intFromEnum(op_code); // fin | opcode if (len <= 125) { buf[1] = @intCast(len); return buf[0..2]; } if (len < 65536) { buf[1] = 126; buf[2] = @intCast((len >> 8) & 0xFF); buf[3] = @intCast(len & 0xFF); return buf[0..4]; } buf[1] = 127; buf[2] = 0; buf[3] = 0; buf[4] = 0; buf[5] = 0; buf[6] = @intCast((len >> 24) & 0xFF); buf[7] = @intCast((len >> 16) & 0xFF); buf[8] = @intCast((len >> 8) & 0xFF); buf[9] = @intCast(len & 0xFF); return buf[0..10]; } pub fn run( allocator: Allocator, address: net.Address, timeout: u64, loop: *jsruntime.Loop, ) !void { // create socket const flags = posix.SOCK.STREAM | posix.SOCK.CLOEXEC | posix.SOCK.NONBLOCK; const listener = try posix.socket(address.any.family, flags, posix.IPPROTO.TCP); defer posix.close(listener); try posix.setsockopt(listener, posix.SOL.SOCKET, posix.SO.REUSEADDR, &std.mem.toBytes(@as(c_int, 1))); // TODO: Broken on darwin // https://github.com/ziglang/zig/issues/17260 (fixed in Zig 0.14) // if (@hasDecl(os.TCP, "NODELAY")) { // try os.setsockopt(socket.sockfd.?, os.IPPROTO.TCP, os.TCP.NODELAY, &std.mem.toBytes(@as(c_int, 1))); // } try posix.setsockopt(listener, posix.IPPROTO.TCP, 1, &std.mem.toBytes(@as(c_int, 1))); // bind & listen try posix.bind(listener, &address.any, address.getOsSockLen()); try posix.listen(listener, 1); // create v8 vm const vm = jsruntime.VM.init(); defer vm.deinit(); const json_version_response = try buildJSONVersionResponse(allocator, address); var server = Server{ .loop = loop, .timeout = timeout, .listener = listener, .allocator = allocator, .close_completion = undefined, .accept_completion = undefined, .json_version_response = json_version_response, .send_pool = std.heap.MemoryPool(Send).init(allocator), .client_pool = std.heap.MemoryPool(Client).init(allocator), .completion_state_pool = std.heap.MemoryPool(CompletionState).init(allocator), }; defer server.deinit(); // accept an connection server.queueAccept(); // infinite loop on I/O events, either: // - cmd from incoming connection on server socket // - JS callbacks events from scripts while (true) { try loop.io.run_for_ns(10 * std.time.ns_per_ms); if (loop.cbk_error) { log.err("JS error", .{}); } } } // Utils // -------- fn buildJSONVersionResponse( allocator: Allocator, address: net.Address, ) ![]const u8 { const body_format = "{{\"webSocketDebuggerUrl\": \"ws://{}/\"}}"; const body_len = std.fmt.count(body_format, .{address}); const response_format = "HTTP/1.1 200 OK\r\n" ++ "Content-Length: {d}\r\n" ++ "Content-Type: application/json; charset=UTF-8\r\n\r\n" ++ body_format; return try std.fmt.allocPrint(allocator, response_format, .{ body_len, address }); } fn now() std.time.Instant { // can only fail on platforms we don't support return std.time.Instant.now() catch unreachable; } // In-place string lowercase fn toLower(str: []u8) []u8 { for (str, 0..) |c, i| { str[i] = std.ascii.toLower(c); } return str; } // Zig is in a weird backend transition right now. Need to determine if // SIMD is even available. const backend_supports_vectors = switch (builtin.zig_backend) { .stage2_llvm, .stage2_c => true, else => false, }; // Websocket messages from client->server are masked using a 4 byte XOR mask fn mask(m: []const u8, payload: []u8) void { var data = payload; if (!comptime backend_supports_vectors) return simpleMask(m, data); const vector_size = std.simd.suggestVectorLength(u8) orelse @sizeOf(usize); if (data.len >= vector_size) { const mask_vector = std.simd.repeat(vector_size, @as(@Vector(4, u8), m[0..4].*)); while (data.len >= vector_size) { const slice = data[0..vector_size]; const masked_data_slice: @Vector(vector_size, u8) = slice.*; slice.* = masked_data_slice ^ mask_vector; data = data[vector_size..]; } } simpleMask(m, data); } // Used when SIMD isn't available, or for any remaining part of the message // which is too small to effectively use SIMD. fn simpleMask(m: []const u8, payload: []u8) void { for (payload, 0..) |b, i| { payload[i] = b ^ m[i & 3]; } } const testing = std.testing; test "server: buildJSONVersionResponse" { const address = try net.Address.parseIp4("127.0.0.1", 9001); const res = try buildJSONVersionResponse(testing.allocator, address); defer testing.allocator.free(res); try testing.expectEqualStrings("HTTP/1.1 200 OK\r\n" ++ "Content-Length: 48\r\n" ++ "Content-Type: application/json; charset=UTF-8\r\n\r\n" ++ "{\"webSocketDebuggerUrl\": \"ws://127.0.0.1:9001/\"}", res); } test "Client: http invalid request" { try assertHTTPError( error.RequestTooLarge, 413, "Request too large", "GET /over/9000 HTTP/1.1\r\n" ++ "Header: " ++ ("a" ** 2050) ++ "\r\n\r\n", ); } test "Client: http invalid handshake" { try assertHTTPError( error.InvalidRequest, 400, "Invalid request", "\r\n\r\n", ); try assertHTTPError( error.NotFound, 404, "Not found", "GET /over/9000 HTTP/1.1\r\n\r\n", ); try assertHTTPError( error.NotFound, 404, "Not found", "POST / HTTP/1.1\r\n\r\n", ); try assertHTTPError( error.InvalidProtocol, 400, "Invalid HTTP protocol", "GET / HTTP/1.0\r\n\r\n", ); try assertHTTPError( error.MissingHeaders, 400, "Missing required header", "GET / HTTP/1.1\r\n\r\n", ); try assertHTTPError( error.MissingHeaders, 400, "Missing required header", "GET / HTTP/1.1\r\nConnection: upgrade\r\n\r\n", ); try assertHTTPError( error.MissingHeaders, 400, "Missing required header", "GET / HTTP/1.1\r\nConnection: upgrade\r\nUpgrade: websocket\r\n\r\n", ); try assertHTTPError( error.MissingHeaders, 400, "Missing required header", "GET / HTTP/1.1\r\nConnection: upgrade\r\nUpgrade: websocket\r\nsec-websocket-version:13\r\n\r\n", ); } test "Client: http valid handshake" { var ms = MockServer{}; defer ms.deinit(); var client = ClientT(*MockServer, MockCDP).init(0, &ms); defer client.deinit(); const request = "GET / HTTP/1.1\r\n" ++ "Connection: upgrade\r\n" ++ "Upgrade: websocket\r\n" ++ "sec-websocket-version:13\r\n" ++ "sec-websocket-key: this is my key\r\n" ++ "Custom: Header-Value\r\n\r\n"; @memcpy(client.reader.buf[0..request.len], request); try testing.expectEqual(true, try client.processData(request.len)); try testing.expectEqual(.websocket, client.mode); try testing.expectEqualStrings( "HTTP/1.1 101 Switching Protocols\r\n" ++ "Upgrade: websocket\r\n" ++ "Connection: upgrade\r\n" ++ "Sec-Websocket-Accept: flzHu2DevQ2dSCSVqKSii5e9C2o=\r\n\r\n", ms.sent.items[0], ); } test "Client: http get json version" { var ms = MockServer{}; defer ms.deinit(); var client = ClientT(*MockServer, MockCDP).init(0, &ms); defer client.deinit(); const request = "GET /json/version HTTP/1.1\r\n\r\n"; @memcpy(client.reader.buf[0..request.len], request); try testing.expectEqual(true, try client.processData(request.len)); try testing.expectEqual(.http, client.mode); // this is the hardcoded string in our MockServer try testing.expectEqualStrings("the json version response", ms.sent.items[0]); } test "Client: write websocket message" { const cases = [_]struct { expected: []const u8, message: []const u8 }{ .{ .expected = &.{ 129, 2, '"', '"' }, .message = "" }, .{ .expected = [_]u8{ 129, 14 } ++ "\"hello world!\"", .message = "hello world!" }, .{ .expected = [_]u8{ 129, 126, 0, 132 } ++ "\"" ++ ("A" ** 130) ++ "\"", .message = "A" ** 130 }, }; for (cases) |c| { var ms = MockServer{}; defer ms.deinit(); var client = ClientT(*MockServer, MockCDP).init(0, &ms); defer client.deinit(); try client.sendJSON(c.message, .{}); try testing.expectEqual(1, ms.sent.items.len); try testing.expectEqualSlices(u8, c.expected, ms.sent.items[0]); } } test "Client: read invalid websocket message" { // 131 = 128 (fin) | 3 where 3 isn't a valid type try assertWebSocketError( error.InvalidMessageType, 1002, "", &.{ 131, 128, 'm', 'a', 's', 'k' }, ); for ([_]u8{ 16, 32, 64 }) |rsv| { // none of the reserve flags should be set try assertWebSocketError( error.ReservedFlags, 1002, "", &.{ rsv, 128, 'm', 'a', 's', 'k' }, ); // as a bitmask try assertWebSocketError( error.ReservedFlags, 1002, "", &.{ rsv + 4, 128, 'm', 'a', 's', 'k' }, ); } // client->server messages must be masked try assertWebSocketError( error.NotMasked, 1002, "", &.{ 129, 1, 'a' }, ); // control types (ping/ping/close) can't be > 125 bytes for ([_]u8{ 136, 137, 138 }) |op| { try assertWebSocketError( error.ControlTooLarge, 1002, "", &.{ op, 254, 1, 1 }, ); } // length of message is 0000 0401, i.e: 1024 * 256 + 1 try assertWebSocketError( error.TooLarge, 1009, "", &.{ 129, 255, 0, 0, 0, 0, 0, 4, 0, 1, 'm', 'a', 's', 'k' }, ); // continuation type message must come after a normal message // even when not a fin frame try assertWebSocketError( error.InvalidContinuation, 1002, "", &.{ 0, 129, 'm', 'a', 's', 'k', 'd' }, ); // continuation type message must come after a normal message // even as a fin frame try assertWebSocketError( error.InvalidContinuation, 1002, "", &.{ 128, 129, 'm', 'a', 's', 'k', 'd' }, ); // text (non-fin) - text (non-fin) try assertWebSocketError( error.NestedFragementation, 1002, "", &.{ 1, 129, 'm', 'a', 's', 'k', 'd', 1, 128, 'k', 's', 'a', 'm' }, ); // text (non-fin) - text (fin) should always been continuation after non-fin try assertWebSocketError( error.NestedFragementation, 1002, "", &.{ 1, 129, 'm', 'a', 's', 'k', 'd', 129, 128, 'k', 's', 'a', 'm' }, ); // close must be fin try assertWebSocketError( error.InvalidContinuation, 1002, "", &.{ 8, 129, 'm', 'a', 's', 'k', 'd', }, ); // ping must be fin try assertWebSocketError( error.InvalidContinuation, 1002, "", &.{ 9, 129, 'm', 'a', 's', 'k', 'd', }, ); // pong must be fin try assertWebSocketError( error.InvalidContinuation, 1002, "", &.{ 10, 129, 'm', 'a', 's', 'k', 'd', }, ); } test "Client: ping reply" { try assertWebSocketMessage( // fin | pong, len &.{ 138, 0 }, // fin | ping, masked | len, 4-byte mask &.{ 137, 128, 0, 0, 0, 0 }, ); try assertWebSocketMessage( // fin | pong, len, payload &.{ 138, 5, 100, 96, 97, 109, 104 }, // fin | ping, masked | len, 4-byte mask, 5 byte payload &.{ 137, 133, 0, 5, 7, 10, 100, 101, 102, 103, 104 }, ); } test "Client: close message" { try assertWebSocketMessage( // fin | close, len, close code (normal) &.{ 136, 2, 3, 232 }, // fin | close, masked | len, 4-byte mask &.{ 136, 128, 0, 0, 0, 0 }, ); } // Testing both HTTP and websocket messages broken up across multiple reads. // We need to fuzz HTTP messages differently than websocket. HTTP are strictly // req -> res with no pipelining. So there should only be 1 message at a time. // So we can only "fuzz" on a per-message basis. // But for websocket, we can fuzz _all_ the messages together. test "Client: fuzz" { var prng = std.rand.DefaultPrng.init(blk: { var seed: u64 = undefined; try std.posix.getrandom(std.mem.asBytes(&seed)); break :blk seed; }); const random = prng.random(); const allocator = testing.allocator; var websocket_messages: std.ArrayListUnmanaged(u8) = .{}; defer websocket_messages.deinit(allocator); // ping with no payload try websocket_messages.appendSlice( allocator, &.{ 137, 128, 0, 0, 0, 0 }, ); // // 10 byte text message with a 0,0,0,0 mask try websocket_messages.appendSlice( allocator, &.{ 129, 138, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, ); // ping with a payload try websocket_messages.appendSlice( allocator, &.{ 137, 133, 0, 5, 7, 10, 100, 101, 102, 103, 104 }, ); // pong with no payload (noop in the server) try websocket_messages.appendSlice( allocator, &.{ 138, 128, 10, 10, 10, 10 }, ); // 687 long message, with a mask try websocket_messages.appendSlice( allocator, [_]u8{ 129, 254, 2, 175, 1, 2, 3, 4 } ++ "A" ** 687, ); // non-fin text message try websocket_messages.appendSlice(allocator, &.{ 1, 130, 0, 0, 0, 0, 1, 2 }); // continuation try websocket_messages.appendSlice(allocator, &.{ 0, 131, 0, 0, 0, 0, 3, 4, 5 }); // pong happening in fragement try websocket_messages.appendSlice(allocator, &.{ 138, 128, 0, 0, 0, 0 }); // more continuation try websocket_messages.appendSlice(allocator, &.{ 0, 130, 0, 0, 0, 0, 6, 7 }); // fin try websocket_messages.appendSlice(allocator, &.{ 128, 133, 0, 0, 0, 0, 8, 9, 10, 11, 12 }); // close try websocket_messages.appendSlice( allocator, &.{ 136, 130, 200, 103, 34, 22, 0, 1 }, ); const SendRandom = struct { fn send(c: anytype, r: std.Random, data: []const u8) !void { var buf = data; while (buf.len > 0) { const to_send = r.intRangeAtMost(usize, 1, buf.len); @memcpy(c.readBuf()[0..to_send], buf[0..to_send]); if (try c.processData(to_send) == false) { return; } buf = buf[to_send..]; } } }; for (0..100) |_| { var ms = MockServer{}; defer ms.deinit(); var client = ClientT(*MockServer, MockCDP).init(0, &ms); defer client.deinit(); try SendRandom.send(&client, random, "GET /json/version HTTP/1.1\r\nContent-Length: 0\r\n\r\n"); try SendRandom.send(&client, random, "GET / HTTP/1.1\r\n" ++ "Connection: upgrade\r\n" ++ "Upgrade: websocket\r\n" ++ "sec-websocket-version:13\r\n" ++ "sec-websocket-key: 1234aa93\r\n" ++ "Custom: Header-Value\r\n\r\n"); // fuzz over all websocket messages try SendRandom.send(&client, random, websocket_messages.items); try testing.expectEqual(5, ms.sent.items.len); try testing.expectEqualStrings( "the json version response", ms.sent.items[0], ); try testing.expectEqualStrings( "HTTP/1.1 101 Switching Protocols\r\n" ++ "Upgrade: websocket\r\n" ++ "Connection: upgrade\r\n" ++ "Sec-Websocket-Accept: KnOKWrrjHS0nGFmtfmYFQoPIGKQ=\r\n\r\n", ms.sent.items[1], ); try testing.expectEqualSlices(u8, &.{ 138, 0 }, ms.sent.items[2]); try testing.expectEqualSlices( u8, &.{ 138, 5, 100, 96, 97, 109, 104 }, ms.sent.items[3], ); try testing.expectEqualSlices( u8, &.{ 136, 2, 3, 232 }, ms.sent.items[4], ); const received = client.cdp.?.messages.items; try testing.expectEqual(3, received.len); try testing.expectEqualSlices( u8, &.{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }, received[0], ); try testing.expectEqualSlices( u8, &([_]u8{ 64, 67, 66, 69 } ** 171 ++ [_]u8{ 64, 67, 66 }), received[1], ); try testing.expectEqualSlices( u8, &.{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }, received[2], ); try testing.expectEqual(true, ms.closed); } } test "server: mask" { var buf: [4000]u8 = undefined; const messages = [_][]const u8{ "1234", "1234" ** 99, "1234" ** 999 }; for (messages) |message| { // we need the message to be mutable since mask operates in-place const payload = buf[0..message.len]; @memcpy(payload, message); mask(&.{ 1, 2, 200, 240 }, payload); try testing.expectEqual(false, std.mem.eql(u8, payload, message)); mask(&.{ 1, 2, 200, 240 }, payload); try testing.expectEqual(true, std.mem.eql(u8, payload, message)); } } test "server: 404" { var c = try createTestClient(); defer c.deinit(); const res = try c.httpRequest("GET /unknown HTTP/1.1\r\n\r\n"); try testing.expectEqualStrings("HTTP/1.1 404 \r\n" ++ "Connection: Close\r\n" ++ "Content-Length: 9\r\n\r\n" ++ "Not found", res); } test "server: get /json/version" { const expected_response = "HTTP/1.1 200 OK\r\n" ++ "Content-Length: 48\r\n" ++ "Content-Type: application/json; charset=UTF-8\r\n\r\n" ++ "{\"webSocketDebuggerUrl\": \"ws://127.0.0.1:9583/\"}"; { // twice on the same connection var c = try createTestClient(); defer c.deinit(); const res1 = try c.httpRequest("GET /json/version HTTP/1.1\r\n\r\n"); try testing.expectEqualStrings(expected_response, res1); const res2 = try c.httpRequest("GET /json/version HTTP/1.1\r\n\r\n"); try testing.expectEqualStrings(expected_response, res2); } { // again on a new connection var c = try createTestClient(); defer c.deinit(); const res1 = try c.httpRequest("GET /json/version HTTP/1.1\r\n\r\n"); try testing.expectEqualStrings(expected_response, res1); const res2 = try c.httpRequest("GET /json/version HTTP/1.1\r\n\r\n"); try testing.expectEqualStrings(expected_response, res2); } } fn assertHTTPError( expected_error: anyerror, comptime expected_status: u16, comptime expected_body: []const u8, input: []const u8, ) !void { var ms = MockServer{}; defer ms.deinit(); var client = ClientT(*MockServer, MockCDP).init(0, &ms); defer client.deinit(); @memcpy(client.reader.buf[0..input.len], input); try testing.expectError(expected_error, client.processData(input.len)); const expected_response = std.fmt.comptimePrint( "HTTP/1.1 {d} \r\nConnection: Close\r\nContent-Length: {d}\r\n\r\n{s}", .{ expected_status, expected_body.len, expected_body }, ); try testing.expectEqual(1, ms.sent.items.len); try testing.expectEqualStrings(expected_response, ms.sent.items[0]); } fn assertWebSocketError( expected_error: anyerror, close_code: u16, close_payload: []const u8, input: []const u8, ) !void { var ms = MockServer{}; defer ms.deinit(); var client = ClientT(*MockServer, MockCDP).init(0, &ms); defer client.deinit(); client.mode = .websocket; // force websocket message processing @memcpy(client.reader.buf[0..input.len], input); try testing.expectError(expected_error, client.processData(input.len)); try testing.expectEqual(1, ms.sent.items.len); const actual = ms.sent.items[0]; // fin | close opcode try testing.expectEqual(136, actual[0]); // message length (code + payload) try testing.expectEqual(2 + close_payload.len, actual[1]); // close code try testing.expectEqual(close_code, std.mem.readInt(u16, actual[2..4], .big)); // close payload (if any) try testing.expectEqualStrings(close_payload, actual[4..]); } fn assertWebSocketMessage( expected: []const u8, input: []const u8, ) !void { var ms = MockServer{}; defer ms.deinit(); var client = ClientT(*MockServer, MockCDP).init(0, &ms); defer client.deinit(); client.mode = .websocket; // force websocket message processing @memcpy(client.reader.buf[0..input.len], input); const more = try client.processData(input.len); try testing.expectEqual(1, ms.sent.items.len); try testing.expectEqualSlices(u8, expected, ms.sent.items[0]); // if we sent a close message, then the serve should have been told // to close the connection if (expected[0] == 136) { try testing.expectEqual(true, ms.closed); try testing.expectEqual(false, more); } else { try testing.expectEqual(false, ms.closed); try testing.expectEqual(true, more); } } const MockServer = struct { loop: *jsruntime.Loop = undefined, closed: bool = false, // record the messages we sent to the client sent: std.ArrayListUnmanaged([]const u8) = .{}, allocator: Allocator = testing.allocator, json_version_response: []const u8 = "the json version response", fn deinit(self: *MockServer) void { const allocator = self.allocator; for (self.sent.items) |msg| { allocator.free(msg); } self.sent.deinit(allocator); } fn queueClose(self: *MockServer, _: anytype) void { self.closed = true; } fn queueSend( self: *MockServer, socket: posix.socket_t, arena: ?ArenaAllocator, data: []const u8, ) !void { _ = socket; const owned = try self.allocator.dupe(u8, data); try self.sent.append(self.allocator, owned); if (arena) |a| { a.deinit(); } } }; const MockCDP = struct { messages: std.ArrayListUnmanaged([]const u8) = .{}, allocator: Allocator = testing.allocator, fn init(_: Allocator, client: anytype, loop: *jsruntime.Loop) MockCDP { _ = loop; _ = client; return .{}; } fn deinit(self: *MockCDP) void { const allocator = self.allocator; for (self.messages.items) |msg| { allocator.free(msg); } self.messages.deinit(allocator); } fn handleMessage(self: *MockCDP, message: []const u8) bool { const owned = self.allocator.dupe(u8, message) catch unreachable; self.messages.append(self.allocator, owned) catch unreachable; return true; } }; fn createTestClient() !TestClient { const address = std.net.Address.initIp4([_]u8{ 127, 0, 0, 1 }, 9583); const stream = try std.net.tcpConnectToAddress(address); const timeout = std.mem.toBytes(posix.timeval{ .tv_sec = 2, .tv_usec = 0, }); try posix.setsockopt(stream.handle, posix.SOL.SOCKET, posix.SO.RCVTIMEO, &timeout); try posix.setsockopt(stream.handle, posix.SOL.SOCKET, posix.SO.SNDTIMEO, &timeout); return .{ .stream = stream }; } const TestClient = struct { stream: std.net.Stream, buf: [1024]u8 = undefined, fn deinit(self: *TestClient) void { self.stream.close(); } fn httpRequest(self: *TestClient, req: []const u8) ![]const u8 { try self.stream.writeAll(req); var pos: usize = 0; var total_length: ?usize = null; while (true) { pos += try self.stream.read(self.buf[pos..]); const response = self.buf[0..pos]; if (total_length == null) { const header_end = std.mem.indexOf(u8, response, "\r\n\r\n") orelse continue; const header = response[0 .. header_end + 4]; const cl_header = "Content-Length: "; const start = (std.mem.indexOf(u8, header, cl_header) orelse { return error.MissingContentLength; }) + cl_header.len; const end = std.mem.indexOfScalarPos(u8, header, start, '\r') orelse { return error.InvalidContentLength; }; const cl = std.fmt.parseInt(usize, header[start..end], 10) catch { return error.InvalidContentLength; }; total_length = cl + header.len; } if (total_length) |tl| { if (pos == tl) { return response; } if (pos > tl) { return error.DataExceedsContentLength; } } } } };