Files
browser/src/Server.zig
Karl Seguin 67875036c5 Rework request interception for Zigdom
Zigdom broke request interception. It isn't zigdom specifically, but in zigdom
we properly block the parser when executing a normal (not async, not defer)
script. This does not work well with request interception, because an
intercepted request isn't blocked on HTTP data, it's blocked on a message from
CDP. Generally, neither our Page nor ScriptManager are CDP-aware. And, even if
they were, it would be hard to break out of our parsing and return control to
the CDP server.

To fix this, we expand on the HTTP Client's basic awareness of CDP (via its
extra_socket field). The HTTP client is now able to block until an intercepted
request is continued/aborted/fulfilled. it does this by being able to ask the
CDP client to read/process data.

This does not yet work for intercepted authentication requests.
2025-12-24 11:49:05 +08:00

1446 lines
48 KiB
Zig

// Copyright (C) 2023-2025 Lightpanda (Selecy SAS)
//
// Francis Bouvier <francis@lightpanda.io>
// Pierre Tachoire <pierre@lightpanda.io>
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
const std = @import("std");
const builtin = @import("builtin");
const net = std.net;
const posix = std.posix;
const Allocator = std.mem.Allocator;
const ArenaAllocator = std.heap.ArenaAllocator;
const log = @import("log.zig");
const App = @import("App.zig");
const CDP = @import("cdp/cdp.zig").CDP;
const MAX_HTTP_REQUEST_SIZE = 4096;
// max message size
// +14 for max websocket payload overhead
// +140 for the max control packet that might be interleaved in a message
const MAX_MESSAGE_SIZE = 512 * 1024 + 14 + 140;
const Server = @This();
app: *App,
shutdown: bool,
allocator: Allocator,
client: ?posix.socket_t,
listener: ?posix.socket_t,
json_version_response: []const u8,
pub fn init(app: *App, address: net.Address) !Server {
const allocator = app.allocator;
const json_version_response = try buildJSONVersionResponse(allocator, address);
errdefer allocator.free(json_version_response);
return .{
.app = app,
.client = null,
.listener = null,
.shutdown = false,
.allocator = allocator,
.json_version_response = json_version_response,
};
}
pub fn deinit(self: *Server) void {
self.shutdown = true;
if (self.listener) |listener| {
posix.close(listener);
}
// *if* server.run is running, we should really wait for it to return
// before existing from here.
self.allocator.free(self.json_version_response);
}
pub fn run(self: *Server, address: net.Address, timeout_ms: u32) !void {
const flags = posix.SOCK.STREAM | posix.SOCK.CLOEXEC;
const listener = try posix.socket(address.any.family, flags, posix.IPPROTO.TCP);
self.listener = listener;
try posix.setsockopt(listener, posix.SOL.SOCKET, posix.SO.REUSEADDR, &std.mem.toBytes(@as(c_int, 1)));
if (@hasDecl(posix.TCP, "NODELAY")) {
try posix.setsockopt(listener, posix.IPPROTO.TCP, posix.TCP.NODELAY, &std.mem.toBytes(@as(c_int, 1)));
}
try posix.bind(listener, &address.any, address.getOsSockLen());
try posix.listen(listener, 1);
log.info(.app, "server running", .{ .address = address });
while (true) {
const socket = posix.accept(listener, null, null, posix.SOCK.NONBLOCK) catch |err| {
if (self.shutdown) {
return;
}
log.err(.app, "CDP accept", .{ .err = err });
std.Thread.sleep(std.time.ns_per_s);
continue;
};
self.client = socket;
defer if (self.client) |s| {
posix.close(s);
self.client = null;
};
if (log.enabled(.app, .info)) {
var client_address: std.net.Address = undefined;
var socklen: posix.socklen_t = @sizeOf(net.Address);
try std.posix.getsockname(socket, &client_address.any, &socklen);
log.info(.app, "client connected", .{ .ip = client_address });
}
self.readLoop(socket, timeout_ms) catch |err| {
log.err(.app, "CDP client loop", .{ .err = err });
};
}
}
fn readLoop(self: *Server, socket: posix.socket_t, timeout_ms: u32) !void {
// This shouldn't be necessary, but the Client is HUGE (> 512KB) because
// it has a large read buffer. I don't know why, but v8 crashes if this
// is on the stack (and I assume it's related to its size).
const client = try self.allocator.create(Client);
defer self.allocator.destroy(client);
client.* = try Client.init(socket, self);
defer client.deinit();
var http = &self.app.http;
http.addCDPClient(.{
.socket = socket,
.ctx = client,
.blocking_read_start = Client.blockingReadStart,
.blocking_read = Client.blockingRead,
.blocking_read_end = Client.blockingReadStop,
});
defer http.removeCDPClient();
std.debug.assert(client.mode == .http);
while (true) {
if (http.poll(timeout_ms) != .cdp_socket) {
log.info(.app, "CDP timeout", .{});
return;
}
if (client.readSocket() == false) {
return;
}
if (client.mode == .cdp) {
break; // switch to our CDP loop
}
}
var cdp = &client.mode.cdp;
var last_message = timestamp(.monotonic);
var ms_remaining = timeout_ms;
while (true) {
switch (cdp.pageWait(ms_remaining)) {
.cdp_socket => {
if (client.readSocket() == false) {
return;
}
last_message = timestamp(.monotonic);
ms_remaining = timeout_ms;
},
.no_page => {
if (http.poll(ms_remaining) != .cdp_socket) {
log.info(.app, "CDP timeout", .{});
return;
}
if (client.readSocket() == false) {
return;
}
last_message = timestamp(.monotonic);
ms_remaining = timeout_ms;
},
.done => {
const elapsed = timestamp(.monotonic) - last_message;
if (elapsed > ms_remaining) {
log.info(.app, "CDP timeout", .{});
return;
}
ms_remaining -= @intCast(elapsed);
},
.navigate => unreachable, // must have been handled by the session
}
}
}
pub const Client = struct {
// The client is initially serving HTTP requests but, under normal circumstances
// should eventually be upgraded to a websocket connections
mode: union(enum) {
http: void,
cdp: CDP,
},
server: *Server,
reader: Reader(true),
socket: posix.socket_t,
socket_flags: usize,
send_arena: ArenaAllocator,
const EMPTY_PONG = [_]u8{ 138, 0 };
// CLOSE, 2 length, code
const CLOSE_NORMAL = [_]u8{ 136, 2, 3, 232 }; // code: 1000
const CLOSE_TOO_BIG = [_]u8{ 136, 2, 3, 241 }; // 1009
const CLOSE_PROTOCOL_ERROR = [_]u8{ 136, 2, 3, 234 }; //code: 1002
// "private-use" close codes must be from 4000-49999
const CLOSE_TIMEOUT = [_]u8{ 136, 2, 15, 160 }; // code: 4000
fn init(socket: posix.socket_t, server: *Server) !Client {
const socket_flags = try posix.fcntl(socket, posix.F.GETFL, 0);
const nonblocking = @as(u32, @bitCast(posix.O{ .NONBLOCK = true }));
// we expect the socket to come to us as nonblocking
std.debug.assert(socket_flags & nonblocking == nonblocking);
var reader = try Reader(true).init(server.allocator);
errdefer reader.deinit();
return .{
.socket = socket,
.server = server,
.reader = reader,
.mode = .{ .http = {} },
.socket_flags = socket_flags,
.send_arena = ArenaAllocator.init(server.allocator),
};
}
fn deinit(self: *Client) void {
switch (self.mode) {
.cdp => |*cdp| cdp.deinit(),
.http => {},
}
self.reader.deinit();
self.send_arena.deinit();
}
fn blockingReadStart(ctx: *anyopaque) bool {
const self: *Client = @ptrCast(@alignCast(ctx));
_ = posix.fcntl(self.socket, posix.F.SETFL, self.socket_flags & ~@as(u32, @bitCast(posix.O{ .NONBLOCK = true }))) catch |err| {
log.warn(.app, "CDP blockingReadStart", .{ .err = err });
return false;
};
return true;
}
fn blockingRead(ctx: *anyopaque) bool {
const self: *Client = @ptrCast(@alignCast(ctx));
return self.readSocket();
}
fn blockingReadStop(ctx: *anyopaque) bool {
const self: *Client = @ptrCast(@alignCast(ctx));
_ = posix.fcntl(self.socket, posix.F.SETFL, self.socket_flags) catch |err| {
log.warn(.app, "CDP blockingReadStop", .{ .err = err });
return false;
};
return true;
}
fn readSocket(self: *Client) bool {
const n = posix.read(self.socket, self.readBuf()) catch |err| {
log.warn(.app, "CDP read", .{ .err = err });
return false;
};
if (n == 0) {
log.info(.app, "CDP disconnect", .{});
return false;
}
return self.processData(n) catch false;
}
fn readBuf(self: *Client) []u8 {
return self.reader.readBuf();
}
fn processData(self: *Client, len: usize) !bool {
self.reader.len += len;
switch (self.mode) {
.cdp => |*cdp| return self.processWebsocketMessage(cdp),
.http => return self.processHTTPRequest(),
}
}
fn processHTTPRequest(self: *Client) !bool {
std.debug.assert(self.reader.pos == 0);
const request = self.reader.buf[0..self.reader.len];
if (request.len > MAX_HTTP_REQUEST_SIZE) {
self.writeHTTPErrorResponse(413, "Request too large");
return error.RequestTooLarge;
}
// we're only expecting [body-less] GET requests.
if (std.mem.endsWith(u8, request, "\r\n\r\n") == false) {
// we need more data, put any more data here
return true;
}
// the next incoming data can go to the front of our buffer
defer self.reader.len = 0;
return self.handleHTTPRequest(request) catch |err| {
switch (err) {
error.NotFound => self.writeHTTPErrorResponse(404, "Not found"),
error.InvalidRequest => self.writeHTTPErrorResponse(400, "Invalid request"),
error.InvalidProtocol => self.writeHTTPErrorResponse(400, "Invalid HTTP protocol"),
error.MissingHeaders => self.writeHTTPErrorResponse(400, "Missing required header"),
error.InvalidUpgradeHeader => self.writeHTTPErrorResponse(400, "Unsupported upgrade type"),
error.InvalidVersionHeader => self.writeHTTPErrorResponse(400, "Invalid websocket version"),
error.InvalidConnectionHeader => self.writeHTTPErrorResponse(400, "Invalid connection header"),
else => {
log.err(.app, "server 500", .{ .err = err, .req = request[0..@min(100, request.len)] });
self.writeHTTPErrorResponse(500, "Internal Server Error");
},
}
return err;
};
}
fn handleHTTPRequest(self: *Client, request: []u8) !bool {
if (request.len < 18) {
// 18 is [generously] the smallest acceptable HTTP request
return error.InvalidRequest;
}
if (std.mem.eql(u8, request[0..4], "GET ") == false) {
return error.NotFound;
}
const url_end = std.mem.indexOfScalarPos(u8, request, 4, ' ') orelse {
return error.InvalidRequest;
};
const url = request[4..url_end];
if (std.mem.eql(u8, url, "/")) {
try self.upgradeConnection(request);
return true;
}
if (std.mem.eql(u8, url, "/json/version")) {
try self.send(self.server.json_version_response);
// Chromedp (a Go driver) does an http request to /json/version
// then to / (websocket upgrade) using a different connection.
// Since we only allow 1 connection at a time, the 2nd one (the
// websocket upgrade) blocks until the first one times out.
// We can avoid that by closing the connection. json_version_response
// has a Connection: Close header too.
try posix.shutdown(self.socket, .recv);
return false;
}
return error.NotFound;
}
fn upgradeConnection(self: *Client, request: []u8) !void {
// our caller already confirmed that we have a trailing \r\n\r\n
const request_line_end = std.mem.indexOfScalar(u8, request, '\r') orelse unreachable;
const request_line = request[0..request_line_end];
if (!std.ascii.endsWithIgnoreCase(request_line, "http/1.1")) {
return error.InvalidProtocol;
}
// we need to extract the sec-websocket-key value
var key: []const u8 = "";
// we need to make sure that we got all the necessary headers + values
var required_headers: u8 = 0;
// can't std.mem.split because it forces the iterated value to be const
// (we could @constCast...)
var buf = request[request_line_end + 2 ..];
while (buf.len > 4) {
const index = std.mem.indexOfScalar(u8, buf, '\r') orelse unreachable;
const separator = std.mem.indexOfScalar(u8, buf[0..index], ':') orelse return error.InvalidRequest;
const name = std.mem.trim(u8, toLower(buf[0..separator]), &std.ascii.whitespace);
const value = std.mem.trim(u8, buf[(separator + 1)..index], &std.ascii.whitespace);
if (std.mem.eql(u8, name, "upgrade")) {
if (!std.ascii.eqlIgnoreCase("websocket", value)) {
return error.InvalidUpgradeHeader;
}
required_headers |= 1;
} else if (std.mem.eql(u8, name, "sec-websocket-version")) {
if (value.len != 2 or value[0] != '1' or value[1] != '3') {
return error.InvalidVersionHeader;
}
required_headers |= 2;
} else if (std.mem.eql(u8, name, "connection")) {
// find if connection header has upgrade in it, example header:
// Connection: keep-alive, Upgrade
if (std.ascii.indexOfIgnoreCase(value, "upgrade") == null) {
return error.InvalidConnectionHeader;
}
required_headers |= 4;
} else if (std.mem.eql(u8, name, "sec-websocket-key")) {
key = value;
required_headers |= 8;
}
const next = index + 2;
buf = buf[next..];
}
if (required_headers != 15) {
return error.MissingHeaders;
}
// our caller has already made sure this request ended in \r\n\r\n
// so it isn't something we need to check again
const allocator = self.send_arena.allocator();
const response = blk: {
// Response to an ugprade request is always this, with
// the Sec-Websocket-Accept value a spacial sha1 hash of the
// request "sec-websocket-version" and a magic value.
const template =
"HTTP/1.1 101 Switching Protocols\r\n" ++
"Upgrade: websocket\r\n" ++
"Connection: upgrade\r\n" ++
"Sec-Websocket-Accept: 0000000000000000000000000000\r\n\r\n";
// The response will be sent via the IO Loop and thus has to have its
// own lifetime.
const res = try allocator.dupe(u8, template);
// magic response
const key_pos = res.len - 32;
var h: [20]u8 = undefined;
var hasher = std.crypto.hash.Sha1.init(.{});
hasher.update(key);
// websocket spec always used this value
hasher.update("258EAFA5-E914-47DA-95CA-C5AB0DC85B11");
hasher.final(&h);
_ = std.base64.standard.Encoder.encode(res[key_pos .. key_pos + 28], h[0..]);
break :blk res;
};
self.mode = .{ .cdp = try CDP.init(self.server.app, self) };
return self.send(response);
}
fn writeHTTPErrorResponse(self: *Client, comptime status: u16, comptime body: []const u8) void {
const response = std.fmt.comptimePrint(
"HTTP/1.1 {d} \r\nConnection: Close\r\nContent-Length: {d}\r\n\r\n{s}",
.{ status, body.len, body },
);
// we're going to close this connection anyways, swallowing any
// error seems safe
self.send(response) catch {};
}
fn processWebsocketMessage(self: *Client, cdp: *CDP) !bool {
var reader = &self.reader;
while (true) {
const msg = reader.next() catch |err| {
switch (err) {
error.TooLarge => self.send(&CLOSE_TOO_BIG) catch {},
error.NotMasked => self.send(&CLOSE_PROTOCOL_ERROR) catch {},
error.ReservedFlags => self.send(&CLOSE_PROTOCOL_ERROR) catch {},
error.InvalidMessageType => self.send(&CLOSE_PROTOCOL_ERROR) catch {},
error.ControlTooLarge => self.send(&CLOSE_PROTOCOL_ERROR) catch {},
error.InvalidContinuation => self.send(&CLOSE_PROTOCOL_ERROR) catch {},
error.NestedFragementation => self.send(&CLOSE_PROTOCOL_ERROR) catch {},
error.OutOfMemory => {}, // don't borther trying to send an error in this case
}
return err;
} orelse break;
switch (msg.type) {
.pong => {},
.ping => try self.sendPong(msg.data),
.close => {
self.send(&CLOSE_NORMAL) catch {};
return false;
},
.text, .binary => if (cdp.handleMessage(msg.data) == false) {
return false;
},
}
if (msg.cleanup_fragment) {
reader.cleanup();
}
}
// We might have read part of the next message. Our reader potentially
// has to move data around in its buffer to make space.
reader.compact();
return true;
}
fn sendPong(self: *Client, data: []const u8) !void {
if (data.len == 0) {
return self.send(&EMPTY_PONG);
}
var header_buf: [10]u8 = undefined;
const header = websocketHeader(&header_buf, .pong, data.len);
const allocator = self.send_arena.allocator();
var framed = try allocator.alloc(u8, header.len + data.len);
@memcpy(framed[0..header.len], header);
@memcpy(framed[header.len..], data);
return self.send(framed);
}
// called by CDP
// Websocket frames have a variable length header. For server-client,
// it could be anywhere from 2 to 10 bytes. Our IO.Loop doesn't have
// writev, so we need to get creative. We'll JSON serialize to a
// buffer, where the first 10 bytes are reserved. We can then backfill
// the header and send the slice.
pub fn sendJSON(self: *Client, message: anytype, opts: std.json.Stringify.Options) !void {
const allocator = self.send_arena.allocator();
var aw = try std.Io.Writer.Allocating.initCapacity(allocator, 512);
// reserve space for the maximum possible header
try aw.writer.writeAll(&.{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 });
try std.json.Stringify.value(message, opts, &aw.writer);
const framed = fillWebsocketHeader(aw.toArrayList());
return self.send(framed);
}
pub fn sendJSONRaw(
self: *Client,
buf: std.ArrayListUnmanaged(u8),
) !void {
// Dangerous API!. We assume the caller has reserved the first 10
// bytes in `buf`.
const framed = fillWebsocketHeader(buf);
return self.send(framed);
}
fn send(self: *Client, data: []const u8) !void {
var pos: usize = 0;
var changed_to_blocking: bool = false;
defer _ = self.send_arena.reset(.{ .retain_with_limit = 1024 * 32 });
defer if (changed_to_blocking) {
// We had to change our socket to blocking me to get our write out
// We need to change it back to non-blocking.
_ = posix.fcntl(self.socket, posix.F.SETFL, self.socket_flags) catch |err| {
log.err(.app, "CDP restore nonblocking", .{ .err = err });
};
};
LOOP: while (pos < data.len) {
const written = posix.write(self.socket, data[pos..]) catch |err| switch (err) {
error.WouldBlock => {
// self.socket is nonblocking, because we don't want to block
// reads. But our life is a lot easier if we block writes,
// largely, because we don't have to maintain a queue of pending
// writes (which would each need their own allocations). So
// if we get a WouldBlock error, we'll switch the socket to
// blocking and switch it back to non-blocking after the write
// is complete. Doesn't seem particularly efficiently, but
// this should virtually never happen.
std.debug.assert(changed_to_blocking == false);
log.debug(.app, "CDP write would block", .{});
changed_to_blocking = true;
_ = try posix.fcntl(self.socket, posix.F.SETFL, self.socket_flags & ~@as(u32, @bitCast(posix.O{ .NONBLOCK = true })));
continue :LOOP;
},
else => return err,
};
if (written == 0) {
return error.Closed;
}
pos += written;
}
}
};
// WebSocket message reader. Given websocket message, acts as an iterator that
// can return zero or more Messages. When next returns null, any incomplete
// message will remain in reader.data
fn Reader(comptime EXPECT_MASK: bool) type {
return struct {
allocator: Allocator,
// position in buf of the start of the next message
pos: usize = 0,
// position in buf up until where we have valid data
// (any new reads must be placed after this)
len: usize = 0,
// we add 140 to allow 1 control message (ping/pong/close) to be
// fragmented into a normal message.
buf: []u8,
fragments: ?Fragments = null,
const Self = @This();
fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, 16 * 1024);
return .{
.buf = buf,
.allocator = allocator,
};
}
fn deinit(self: *Self) void {
self.cleanup();
self.allocator.free(self.buf);
}
fn cleanup(self: *Self) void {
if (self.fragments) |*f| {
f.message.deinit(self.allocator);
self.fragments = null;
}
}
fn readBuf(self: *Self) []u8 {
// We might have read a partial http or websocket message.
// Subsequent reads must read from where we left off.
return self.buf[self.len..];
}
fn next(self: *Self) !?Message {
LOOP: while (true) {
var buf = self.buf[self.pos..self.len];
const length_of_len, const message_len = extractLengths(buf) orelse {
// we don't have enough bytes
return null;
};
const byte1 = buf[0];
if (byte1 & 112 != 0) {
return error.ReservedFlags;
}
if (comptime EXPECT_MASK) {
if (buf[1] & 128 != 128) {
// client -> server messages _must_ be masked
return error.NotMasked;
}
} else if (buf[1] & 128 != 0) {
// server -> client are never masked
return error.Masked;
}
var is_control = false;
var is_continuation = false;
var message_type: Message.Type = undefined;
switch (byte1 & 15) {
0 => is_continuation = true,
1 => message_type = .text,
2 => message_type = .binary,
8 => {
is_control = true;
message_type = .close;
},
9 => {
is_control = true;
message_type = .ping;
},
10 => {
is_control = true;
message_type = .pong;
},
else => return error.InvalidMessageType,
}
if (is_control) {
if (message_len > 125) {
return error.ControlTooLarge;
}
} else if (message_len > MAX_MESSAGE_SIZE) {
return error.TooLarge;
} else if (message_len > self.buf.len) {
const len = self.buf.len;
self.buf = try growBuffer(self.allocator, self.buf, message_len);
buf = self.buf[0..len];
// we need more data
return null;
} else if (buf.len < message_len) {
// we need more data
return null;
}
// prefix + length_of_len + mask
const header_len = 2 + length_of_len + if (comptime EXPECT_MASK) 4 else 0;
const payload = buf[header_len..message_len];
if (comptime EXPECT_MASK) {
mask(buf[header_len - 4 .. header_len], payload);
}
// whatever happens after this, we know where the next message starts
self.pos += message_len;
const fin = byte1 & 128 == 128;
if (is_continuation) {
const fragments = &(self.fragments orelse return error.InvalidContinuation);
if (fragments.message.items.len + message_len > MAX_MESSAGE_SIZE) {
return error.TooLarge;
}
try fragments.message.appendSlice(self.allocator, payload);
if (fin == false) {
// maybe we have more parts of the message waiting
continue :LOOP;
}
// this continuation is done!
return .{
.type = fragments.type,
.data = fragments.message.items,
.cleanup_fragment = true,
};
}
const can_be_fragmented = message_type == .text or message_type == .binary;
if (self.fragments != null and can_be_fragmented) {
// if this isn't a continuation, then we can't have fragments
return error.NestedFragementation;
}
if (fin == false) {
if (can_be_fragmented == false) {
return error.InvalidContinuation;
}
// not continuation, and not fin. It has to be the first message
// in a fragmented message.
var fragments = Fragments{ .message = .{}, .type = message_type };
try fragments.message.appendSlice(self.allocator, payload);
self.fragments = fragments;
continue :LOOP;
}
return .{
.data = payload,
.type = message_type,
.cleanup_fragment = false,
};
}
}
fn extractLengths(buf: []const u8) ?struct { usize, usize } {
if (buf.len < 2) {
return null;
}
const length_of_len: usize = switch (buf[1] & 127) {
126 => 2,
127 => 8,
else => 0,
};
if (buf.len < length_of_len + 2) {
// we definitely don't have enough buf yet
return null;
}
const message_len = switch (length_of_len) {
2 => @as(u16, @intCast(buf[3])) | @as(u16, @intCast(buf[2])) << 8,
8 => @as(u64, @intCast(buf[9])) | @as(u64, @intCast(buf[8])) << 8 | @as(u64, @intCast(buf[7])) << 16 | @as(u64, @intCast(buf[6])) << 24 | @as(u64, @intCast(buf[5])) << 32 | @as(u64, @intCast(buf[4])) << 40 | @as(u64, @intCast(buf[3])) << 48 | @as(u64, @intCast(buf[2])) << 56,
else => buf[1] & 127,
} + length_of_len + 2 + if (comptime EXPECT_MASK) 4 else 0; // +2 for header prefix, +4 for mask;
return .{ length_of_len, message_len };
}
// This is called after we've processed complete websocket messages (this
// only applies to websocket messages).
// There are three cases:
// 1 - We don't have any incomplete data (for a subsequent message) in buf.
// This is the easier to handle, we can set pos & len to 0.
// 2 - We have part of the next message, but we know it'll fit in the
// remaining buf. We don't need to do anything
// 3 - We have part of the next message, but either it won't fight into the
// remaining buffer, or we don't know (because we don't have enough
// of the header to tell the length). We need to "compact" the buffer
fn compact(self: *Self) void {
const pos = self.pos;
const len = self.len;
std.debug.assert(pos <= len);
// how many (if any) partial bytes do we have
const partial_bytes = len - pos;
if (partial_bytes == 0) {
// We have no partial bytes. Setting these to 0 ensures that we
// get the best utilization of our buffer
self.pos = 0;
self.len = 0;
return;
}
const partial = self.buf[pos..len];
// If we have enough bytes of the next message to tell its length
// we'll be able to figure out whether we need to do anything or not.
if (extractLengths(partial)) |length_meta| {
const next_message_len = length_meta.@"1";
// if this isn't true, then we have a full message and it
// should have been processed.
std.debug.assert(next_message_len > partial_bytes);
const missing_bytes = next_message_len - partial_bytes;
const free_space = self.buf.len - len;
if (missing_bytes < free_space) {
// we have enough space in our buffer, as is,
return;
}
}
// We're here because we either don't have enough bytes of the next
// message, or we know that it won't fit in our buffer as-is.
std.mem.copyForwards(u8, self.buf, partial);
self.pos = 0;
self.len = partial_bytes;
}
};
}
fn growBuffer(allocator: Allocator, buf: []u8, required_capacity: usize) ![]u8 {
// from std.ArrayList
var new_capacity = buf.len;
while (true) {
new_capacity +|= new_capacity / 2 + 8;
if (new_capacity >= required_capacity) break;
}
log.debug(.app, "CDP buffer growth", .{ .from = buf.len, .to = new_capacity });
if (allocator.resize(buf, new_capacity)) {
return buf.ptr[0..new_capacity];
}
const new_buffer = try allocator.alloc(u8, new_capacity);
@memcpy(new_buffer[0..buf.len], buf);
allocator.free(buf);
return new_buffer;
}
const Fragments = struct {
type: Message.Type,
message: std.ArrayListUnmanaged(u8),
};
const Message = struct {
type: Type,
data: []const u8,
cleanup_fragment: bool,
const Type = enum {
text,
binary,
close,
ping,
pong,
};
};
// These are the only websocket types that we're currently sending
const OpCode = enum(u8) {
text = 128 | 1,
close = 128 | 8,
pong = 128 | 10,
};
fn fillWebsocketHeader(buf: std.ArrayListUnmanaged(u8)) []const u8 {
// can't use buf[0..10] here, because the header length
// is variable. If it's just 2 bytes, for example, we need the
// framed message to be:
// h1, h2, data
// If we use buf[0..10], we'd get:
// h1, h2, 0, 0, 0, 0, 0, 0, 0, 0, data
var header_buf: [10]u8 = undefined;
// -10 because we reserved 10 bytes for the header above
const header = websocketHeader(&header_buf, .text, buf.items.len - 10);
const start = 10 - header.len;
const message = buf.items;
@memcpy(message[start..10], header);
return message[start..];
}
// makes the assumption that our caller reserved the first
// 10 bytes for the header
fn websocketHeader(buf: []u8, op_code: OpCode, payload_len: usize) []const u8 {
std.debug.assert(buf.len == 10);
const len = payload_len;
buf[0] = 128 | @intFromEnum(op_code); // fin | opcode
if (len <= 125) {
buf[1] = @intCast(len);
return buf[0..2];
}
if (len < 65536) {
buf[1] = 126;
buf[2] = @intCast((len >> 8) & 0xFF);
buf[3] = @intCast(len & 0xFF);
return buf[0..4];
}
buf[1] = 127;
buf[2] = 0;
buf[3] = 0;
buf[4] = 0;
buf[5] = 0;
buf[6] = @intCast((len >> 24) & 0xFF);
buf[7] = @intCast((len >> 16) & 0xFF);
buf[8] = @intCast((len >> 8) & 0xFF);
buf[9] = @intCast(len & 0xFF);
return buf[0..10];
}
// Utils
// --------
fn buildJSONVersionResponse(
allocator: Allocator,
address: net.Address,
) ![]const u8 {
const body_format = "{{\"webSocketDebuggerUrl\": \"ws://{f}/\"}}";
const body_len = std.fmt.count(body_format, .{address});
// We send a Connection: Close (and actually close the connection)
// because chromedp (Go driver) sends a request to /json/version and then
// does an upgrade request, on a different connection. Since we only allow
// 1 connection at a time, the upgrade connection doesn't proceed until we
// timeout the /json/version. So, instead of waiting for that, we just
// always close HTTP requests.
const response_format =
"HTTP/1.1 200 OK\r\n" ++
"Content-Length: {d}\r\n" ++
"Connection: Close\r\n" ++
"Content-Type: application/json; charset=UTF-8\r\n\r\n" ++
body_format;
return try std.fmt.allocPrint(allocator, response_format, .{ body_len, address });
}
pub const timestamp = @import("datetime.zig").timestamp;
// In-place string lowercase
fn toLower(str: []u8) []u8 {
for (str, 0..) |c, i| {
str[i] = std.ascii.toLower(c);
}
return str;
}
// Zig is in a weird backend transition right now. Need to determine if
// SIMD is even available.
const backend_supports_vectors = switch (builtin.zig_backend) {
.stage2_llvm, .stage2_c => true,
else => false,
};
// Websocket messages from client->server are masked using a 4 byte XOR mask
fn mask(m: []const u8, payload: []u8) void {
var data = payload;
if (!comptime backend_supports_vectors) return simpleMask(m, data);
const vector_size = std.simd.suggestVectorLength(u8) orelse @sizeOf(usize);
if (data.len >= vector_size) {
const mask_vector = std.simd.repeat(vector_size, @as(@Vector(4, u8), m[0..4].*));
while (data.len >= vector_size) {
const slice = data[0..vector_size];
const masked_data_slice: @Vector(vector_size, u8) = slice.*;
slice.* = masked_data_slice ^ mask_vector;
data = data[vector_size..];
}
}
simpleMask(m, data);
}
// Used when SIMD isn't available, or for any remaining part of the message
// which is too small to effectively use SIMD.
fn simpleMask(m: []const u8, payload: []u8) void {
for (payload, 0..) |b, i| {
payload[i] = b ^ m[i & 3];
}
}
const testing = std.testing;
test "server: buildJSONVersionResponse" {
const address = try net.Address.parseIp4("127.0.0.1", 9001);
const res = try buildJSONVersionResponse(testing.allocator, address);
defer testing.allocator.free(res);
try testing.expectEqualStrings("HTTP/1.1 200 OK\r\n" ++
"Content-Length: 48\r\n" ++
"Connection: Close\r\n" ++
"Content-Type: application/json; charset=UTF-8\r\n\r\n" ++
"{\"webSocketDebuggerUrl\": \"ws://127.0.0.1:9001/\"}", res);
}
test "Client: http invalid request" {
var c = try createTestClient();
defer c.deinit();
const res = try c.httpRequest("GET /over/9000 HTTP/1.1\r\n" ++ "Header: " ++ ("a" ** 4100) ++ "\r\n\r\n");
try testing.expectEqualStrings("HTTP/1.1 413 \r\n" ++
"Connection: Close\r\n" ++
"Content-Length: 17\r\n\r\n" ++
"Request too large", res);
}
test "Client: http invalid handshake" {
try assertHTTPError(
400,
"Invalid request",
"\r\n\r\n",
);
try assertHTTPError(
404,
"Not found",
"GET /over/9000 HTTP/1.1\r\n\r\n",
);
try assertHTTPError(
404,
"Not found",
"POST / HTTP/1.1\r\n\r\n",
);
try assertHTTPError(
400,
"Invalid HTTP protocol",
"GET / HTTP/1.0\r\n\r\n",
);
try assertHTTPError(
400,
"Missing required header",
"GET / HTTP/1.1\r\n\r\n",
);
try assertHTTPError(
400,
"Missing required header",
"GET / HTTP/1.1\r\nConnection: upgrade\r\n\r\n",
);
try assertHTTPError(
400,
"Missing required header",
"GET / HTTP/1.1\r\nConnection: upgrade\r\nUpgrade: websocket\r\n\r\n",
);
try assertHTTPError(
400,
"Missing required header",
"GET / HTTP/1.1\r\nConnection: upgrade\r\nUpgrade: websocket\r\nsec-websocket-version:13\r\n\r\n",
);
}
test "Client: http valid handshake" {
var c = try createTestClient();
defer c.deinit();
const request =
"GET / HTTP/1.1\r\n" ++
"Connection: upgrade\r\n" ++
"Upgrade: websocket\r\n" ++
"sec-websocket-version:13\r\n" ++
"sec-websocket-key: this is my key\r\n" ++
"Custom: Header-Value\r\n\r\n";
const res = try c.httpRequest(request);
try testing.expectEqualStrings("HTTP/1.1 101 Switching Protocols\r\n" ++
"Upgrade: websocket\r\n" ++
"Connection: upgrade\r\n" ++
"Sec-Websocket-Accept: flzHu2DevQ2dSCSVqKSii5e9C2o=\r\n\r\n", res);
}
test "Client: read invalid websocket message" {
// 131 = 128 (fin) | 3 where 3 isn't a valid type
try assertWebSocketError(
1002,
&.{ 131, 128, 'm', 'a', 's', 'k' },
);
for ([_]u8{ 16, 32, 64 }) |rsv| {
// none of the reserve flags should be set
try assertWebSocketError(
1002,
&.{ rsv, 128, 'm', 'a', 's', 'k' },
);
// as a bitmask
try assertWebSocketError(
1002,
&.{ rsv + 4, 128, 'm', 'a', 's', 'k' },
);
}
// client->server messages must be masked
try assertWebSocketError(
1002,
&.{ 129, 1, 'a' },
);
// control types (ping/ping/close) can't be > 125 bytes
for ([_]u8{ 136, 137, 138 }) |op| {
try assertWebSocketError(
1002,
&.{ op, 254, 1, 1 },
);
}
// length of message is 0000 0810, i.e: 1024 * 512 + 265
try assertWebSocketError(1009, &.{ 129, 255, 0, 0, 0, 0, 0, 8, 1, 0, 'm', 'a', 's', 'k' });
// continuation type message must come after a normal message
// even when not a fin frame
try assertWebSocketError(
1002,
&.{ 0, 129, 'm', 'a', 's', 'k', 'd' },
);
// continuation type message must come after a normal message
// even as a fin frame
try assertWebSocketError(
1002,
&.{ 128, 129, 'm', 'a', 's', 'k', 'd' },
);
// text (non-fin) - text (non-fin)
try assertWebSocketError(
1002,
&.{ 1, 129, 'm', 'a', 's', 'k', 'd', 1, 128, 'k', 's', 'a', 'm' },
);
// text (non-fin) - text (fin) should always been continuation after non-fin
try assertWebSocketError(
1002,
&.{ 1, 129, 'm', 'a', 's', 'k', 'd', 129, 128, 'k', 's', 'a', 'm' },
);
// close must be fin
try assertWebSocketError(
1002,
&.{
8, 129, 'm', 'a', 's', 'k', 'd',
},
);
// ping must be fin
try assertWebSocketError(
1002,
&.{
9, 129, 'm', 'a', 's', 'k', 'd',
},
);
// pong must be fin
try assertWebSocketError(
1002,
&.{
10, 129, 'm', 'a', 's', 'k', 'd',
},
);
}
test "Client: ping reply" {
try assertWebSocketMessage(
// fin | pong, len
&.{ 138, 0 },
// fin | ping, masked | len, 4-byte mask
&.{ 137, 128, 0, 0, 0, 0 },
);
try assertWebSocketMessage(
// fin | pong, len, payload
&.{ 138, 5, 100, 96, 97, 109, 104 },
// fin | ping, masked | len, 4-byte mask, 5 byte payload
&.{ 137, 133, 0, 5, 7, 10, 100, 101, 102, 103, 104 },
);
}
test "Client: close message" {
try assertWebSocketMessage(
// fin | close, len, close code (normal)
&.{ 136, 2, 3, 232 },
// fin | close, masked | len, 4-byte mask
&.{ 136, 128, 0, 0, 0, 0 },
);
}
test "server: mask" {
var buf: [4000]u8 = undefined;
const messages = [_][]const u8{ "1234", "1234" ** 99, "1234" ** 999 };
for (messages) |message| {
// we need the message to be mutable since mask operates in-place
const payload = buf[0..message.len];
@memcpy(payload, message);
mask(&.{ 1, 2, 200, 240 }, payload);
try testing.expectEqual(false, std.mem.eql(u8, payload, message));
mask(&.{ 1, 2, 200, 240 }, payload);
try testing.expectEqual(true, std.mem.eql(u8, payload, message));
}
}
test "server: 404" {
var c = try createTestClient();
defer c.deinit();
const res = try c.httpRequest("GET /unknown HTTP/1.1\r\n\r\n");
try testing.expectEqualStrings("HTTP/1.1 404 \r\n" ++
"Connection: Close\r\n" ++
"Content-Length: 9\r\n\r\n" ++
"Not found", res);
}
test "server: get /json/version" {
const expected_response =
"HTTP/1.1 200 OK\r\n" ++
"Content-Length: 48\r\n" ++
"Connection: Close\r\n" ++
"Content-Type: application/json; charset=UTF-8\r\n\r\n" ++
"{\"webSocketDebuggerUrl\": \"ws://127.0.0.1:9583/\"}";
{
// twice on the same connection
var c = try createTestClient();
defer c.deinit();
const res1 = try c.httpRequest("GET /json/version HTTP/1.1\r\n\r\n");
try testing.expectEqualStrings(expected_response, res1);
}
{
// again on a new connection
var c = try createTestClient();
defer c.deinit();
const res1 = try c.httpRequest("GET /json/version HTTP/1.1\r\n\r\n");
try testing.expectEqualStrings(expected_response, res1);
}
}
fn assertHTTPError(
comptime expected_status: u16,
comptime expected_body: []const u8,
input: []const u8,
) !void {
var c = try createTestClient();
defer c.deinit();
const res = try c.httpRequest(input);
const expected_response = std.fmt.comptimePrint(
"HTTP/1.1 {d} \r\nConnection: Close\r\nContent-Length: {d}\r\n\r\n{s}",
.{ expected_status, expected_body.len, expected_body },
);
try testing.expectEqualStrings(expected_response, res);
}
fn assertWebSocketError(close_code: u16, input: []const u8) !void {
var c = try createTestClient();
defer c.deinit();
try c.handshake();
try c.stream.writeAll(input);
const msg = try c.readWebsocketMessage() orelse return error.NoMessage;
defer if (msg.cleanup_fragment) {
c.reader.cleanup();
};
try testing.expectEqual(.close, msg.type);
try testing.expectEqual(2, msg.data.len);
try testing.expectEqual(close_code, std.mem.readInt(u16, msg.data[0..2], .big));
}
fn assertWebSocketMessage(expected: []const u8, input: []const u8) !void {
var c = try createTestClient();
defer c.deinit();
try c.handshake();
try c.stream.writeAll(input);
const msg = try c.readWebsocketMessage() orelse return error.NoMessage;
defer if (msg.cleanup_fragment) {
c.reader.cleanup();
};
const actual = c.reader.buf[0 .. msg.data.len + 2];
try testing.expectEqualSlices(u8, expected, actual);
}
const MockCDP = struct {
messages: std.ArrayListUnmanaged([]const u8) = .{},
allocator: Allocator = testing.allocator,
fn init(_: Allocator, client: anytype) MockCDP {
_ = client;
return .{};
}
fn deinit(self: *MockCDP) void {
const allocator = self.allocator;
for (self.messages.items) |msg| {
allocator.free(msg);
}
self.messages.deinit(allocator);
}
fn handleMessage(self: *MockCDP, message: []const u8) bool {
const owned = self.allocator.dupe(u8, message) catch unreachable;
self.messages.append(self.allocator, owned) catch unreachable;
return true;
}
};
fn createTestClient() !TestClient {
const address = std.net.Address.initIp4([_]u8{ 127, 0, 0, 1 }, 9583);
const stream = try std.net.tcpConnectToAddress(address);
const timeout = std.mem.toBytes(posix.timeval{
.sec = 2,
.usec = 0,
});
try posix.setsockopt(stream.handle, posix.SOL.SOCKET, posix.SO.RCVTIMEO, &timeout);
try posix.setsockopt(stream.handle, posix.SOL.SOCKET, posix.SO.SNDTIMEO, &timeout);
return .{
.stream = stream,
.reader = .{
.allocator = testing.allocator,
.buf = try testing.allocator.alloc(u8, 1024 * 16),
},
};
}
const TestClient = struct {
stream: std.net.Stream,
buf: [1024]u8 = undefined,
reader: Reader(false),
fn deinit(self: *TestClient) void {
self.stream.close();
self.reader.deinit();
}
fn httpRequest(self: *TestClient, req: []const u8) ![]const u8 {
try self.stream.writeAll(req);
var pos: usize = 0;
var total_length: ?usize = null;
while (true) {
pos += try self.stream.read(self.buf[pos..]);
if (pos == 0) {
return error.NoMoreData;
}
const response = self.buf[0..pos];
if (total_length == null) {
const header_end = std.mem.indexOf(u8, response, "\r\n\r\n") orelse continue;
const header = response[0 .. header_end + 4];
const cl = blk: {
const cl_header = "Content-Length: ";
const start = (std.mem.indexOf(u8, header, cl_header) orelse {
break :blk 0;
}) + cl_header.len;
const end = std.mem.indexOfScalarPos(u8, header, start, '\r') orelse {
return error.InvalidContentLength;
};
break :blk std.fmt.parseInt(usize, header[start..end], 10) catch {
return error.InvalidContentLength;
};
};
total_length = cl + header.len;
}
if (total_length) |tl| {
if (pos == tl) {
return response;
}
if (pos > tl) {
return error.DataExceedsContentLength;
}
}
}
}
fn handshake(self: *TestClient) !void {
const request =
"GET / HTTP/1.1\r\n" ++
"Connection: upgrade\r\n" ++
"Upgrade: websocket\r\n" ++
"sec-websocket-version:13\r\n" ++
"sec-websocket-key: this is my key\r\n" ++
"Custom: Header-Value\r\n\r\n";
const res = try self.httpRequest(request);
try testing.expectEqualStrings("HTTP/1.1 101 Switching Protocols\r\n" ++
"Upgrade: websocket\r\n" ++
"Connection: upgrade\r\n" ++
"Sec-Websocket-Accept: flzHu2DevQ2dSCSVqKSii5e9C2o=\r\n\r\n", res);
}
fn readWebsocketMessage(self: *TestClient) !?Message {
while (true) {
const n = try self.stream.read(self.reader.readBuf());
if (n == 0) {
return error.Closed;
}
self.reader.len += n;
if (try self.reader.next()) |msg| {
return msg;
}
}
}
};