mirror of
https://github.com/lightpanda-io/browser.git
synced 2025-12-16 08:18:59 +00:00
864 lines
27 KiB
Zig
864 lines
27 KiB
Zig
const std = @import("std");
|
|
const assert = std.debug.assert;
|
|
|
|
const Allocator = std.mem.Allocator;
|
|
const Alignment = std.mem.Alignment;
|
|
|
|
const Slab = struct {
|
|
alignment: Alignment,
|
|
item_size: usize,
|
|
max_slot_count: usize,
|
|
|
|
bitset: std.bit_set.DynamicBitSetUnmanaged,
|
|
chunks: std.ArrayListUnmanaged([]u8),
|
|
|
|
pub fn init(
|
|
allocator: Allocator,
|
|
alignment: Alignment,
|
|
item_size: usize,
|
|
max_slot_count: usize,
|
|
) !Slab {
|
|
return .{
|
|
.alignment = alignment,
|
|
.item_size = item_size,
|
|
.bitset = try .initFull(allocator, 0),
|
|
.chunks = .empty,
|
|
.max_slot_count = max_slot_count,
|
|
};
|
|
}
|
|
|
|
pub fn deinit(self: *Slab, allocator: Allocator) void {
|
|
self.bitset.deinit(allocator);
|
|
|
|
for (self.chunks.items) |chunk| {
|
|
allocator.rawFree(chunk, self.alignment, @returnAddress());
|
|
}
|
|
|
|
self.chunks.deinit(allocator);
|
|
}
|
|
|
|
inline fn calculateChunkSize(self: *Slab, chunk_index: usize) usize {
|
|
const safe_index: u6 = @intCast(@min(std.math.maxInt(u6), chunk_index));
|
|
const exponential = @as(usize, 1) << safe_index;
|
|
return @min(exponential, self.max_slot_count);
|
|
}
|
|
|
|
inline fn toBitsetIndex(self: *Slab, chunk_index: usize, slot_index: usize) usize {
|
|
var offset: usize = 0;
|
|
for (0..chunk_index) |i| {
|
|
const chunk_size = self.calculateChunkSize(i);
|
|
offset += chunk_size;
|
|
}
|
|
return offset + slot_index;
|
|
}
|
|
|
|
inline fn toChunkAndSlotIndices(self: *Slab, bitset_index: usize) struct { usize, usize } {
|
|
var offset: usize = 0;
|
|
var chunk_index: usize = 0;
|
|
|
|
while (chunk_index < self.chunks.items.len) : (chunk_index += 1) {
|
|
const chunk_size = self.calculateChunkSize(chunk_index);
|
|
if (bitset_index < offset + chunk_size) {
|
|
return .{ chunk_index, bitset_index - offset };
|
|
}
|
|
|
|
offset += chunk_size;
|
|
}
|
|
|
|
unreachable;
|
|
}
|
|
|
|
fn alloc(self: *Slab, allocator: Allocator) ![]u8 {
|
|
if (self.bitset.findFirstSet()) |index| {
|
|
const chunk_index, const slot_index = self.toChunkAndSlotIndices(index);
|
|
|
|
// if we have a free slot
|
|
self.bitset.unset(index);
|
|
|
|
const chunk = self.chunks.items[chunk_index];
|
|
const offset = slot_index * self.item_size;
|
|
return chunk.ptr[offset..][0..self.item_size];
|
|
} else {
|
|
const old_capacity = self.bitset.bit_length;
|
|
|
|
// if we have don't have a free slot
|
|
try self.allocateChunk(allocator);
|
|
|
|
const first_slot_index = old_capacity;
|
|
self.bitset.unset(first_slot_index);
|
|
|
|
const new_chunk = self.chunks.items[self.chunks.items.len - 1];
|
|
return new_chunk.ptr[0..self.item_size];
|
|
}
|
|
}
|
|
|
|
fn free(self: *Slab, ptr: [*]u8) void {
|
|
const addr = @intFromPtr(ptr);
|
|
|
|
for (self.chunks.items, 0..) |chunk, i| {
|
|
const chunk_start = @intFromPtr(chunk.ptr);
|
|
const chunk_end = chunk_start + chunk.len;
|
|
|
|
if (addr >= chunk_start and addr < chunk_end) {
|
|
const offset = addr - chunk_start;
|
|
const slot_index = offset / self.item_size;
|
|
|
|
const bitset_index = self.toBitsetIndex(i, slot_index);
|
|
assert(!self.bitset.isSet(bitset_index));
|
|
|
|
self.bitset.set(bitset_index);
|
|
return;
|
|
}
|
|
}
|
|
|
|
unreachable;
|
|
}
|
|
|
|
fn allocateChunk(self: *Slab, allocator: Allocator) !void {
|
|
const next_chunk_size = self.calculateChunkSize(self.chunks.items.len);
|
|
const chunk_len = self.item_size * next_chunk_size;
|
|
|
|
const chunk_ptr = allocator.rawAlloc(
|
|
chunk_len,
|
|
self.alignment,
|
|
@returnAddress(),
|
|
) orelse return error.FailedChildAllocation;
|
|
|
|
const chunk = chunk_ptr[0..chunk_len];
|
|
try self.chunks.append(allocator, chunk);
|
|
|
|
const new_capacity = self.bitset.bit_length + next_chunk_size;
|
|
try self.bitset.resize(allocator, new_capacity, true);
|
|
}
|
|
|
|
const Stats = struct {
|
|
key: SlabKey,
|
|
item_size: usize,
|
|
chunk_count: usize,
|
|
total_slots: usize,
|
|
slots_in_use: usize,
|
|
slots_free: usize,
|
|
bytes_allocated: usize,
|
|
bytes_in_use: usize,
|
|
bytes_free: usize,
|
|
utilization_ratio: f64,
|
|
};
|
|
|
|
fn getStats(self: *const Slab, key: SlabKey) Stats {
|
|
const total_slots = self.bitset.bit_length;
|
|
const free_slots = self.bitset.count();
|
|
const used_slots = total_slots - free_slots;
|
|
const bytes_allocated = total_slots * self.item_size;
|
|
const bytes_in_use = used_slots * self.item_size;
|
|
|
|
const utilization_ratio = if (bytes_allocated > 0)
|
|
@as(f64, @floatFromInt(bytes_in_use)) / @as(f64, @floatFromInt(bytes_allocated))
|
|
else
|
|
0.0;
|
|
|
|
return .{
|
|
.key = key,
|
|
.item_size = self.item_size,
|
|
.chunk_count = self.chunks.items.len,
|
|
.total_slots = total_slots,
|
|
.slots_in_use = used_slots,
|
|
.slots_free = free_slots,
|
|
.bytes_allocated = bytes_allocated,
|
|
.bytes_in_use = bytes_in_use,
|
|
.bytes_free = free_slots * self.item_size,
|
|
.utilization_ratio = utilization_ratio,
|
|
};
|
|
}
|
|
};
|
|
|
|
const SlabKey = struct {
|
|
size: usize,
|
|
alignment: Alignment,
|
|
};
|
|
|
|
pub const SlabAllocator = struct {
|
|
const Self = @This();
|
|
|
|
child_allocator: Allocator,
|
|
max_slot_count: usize,
|
|
|
|
slabs: std.ArrayHashMapUnmanaged(SlabKey, Slab, struct {
|
|
const Context = @This();
|
|
|
|
pub fn hash(_: Context, key: SlabKey) u32 {
|
|
var hasher = std.hash.Wyhash.init(0);
|
|
std.hash.autoHash(&hasher, key.size);
|
|
std.hash.autoHash(&hasher, key.alignment);
|
|
return @truncate(hasher.final());
|
|
}
|
|
|
|
pub fn eql(_: Context, a: SlabKey, b: SlabKey, _: usize) bool {
|
|
return a.size == b.size and a.alignment == b.alignment;
|
|
}
|
|
}, false) = .empty,
|
|
|
|
pub fn init(child_allocator: Allocator, max_slot_count: usize) Self {
|
|
assert(std.math.isPowerOfTwo(max_slot_count));
|
|
|
|
return .{
|
|
.child_allocator = child_allocator,
|
|
.slabs = .empty,
|
|
.max_slot_count = max_slot_count,
|
|
};
|
|
}
|
|
|
|
pub fn deinit(self: *Self) void {
|
|
for (self.slabs.values()) |*slab| {
|
|
slab.deinit(self.child_allocator);
|
|
}
|
|
|
|
self.slabs.deinit(self.child_allocator);
|
|
}
|
|
|
|
pub const ResetKind = enum {
|
|
/// Free all chunks and release all memory.
|
|
clear,
|
|
/// Keep all chunks, reset trees to reuse memory.
|
|
retain_capacity,
|
|
};
|
|
|
|
/// This clears all of the stored memory, freeing the currently used chunks.
|
|
pub fn reset(self: *Self, kind: ResetKind) void {
|
|
switch (kind) {
|
|
.clear => {
|
|
for (self.slabs.values()) |*slab| {
|
|
for (slab.chunks.items) |chunk| {
|
|
self.child_allocator.free(chunk);
|
|
}
|
|
|
|
slab.chunks.clearAndFree(self.child_allocator);
|
|
slab.bitset.deinit(self.child_allocator);
|
|
}
|
|
|
|
self.slabs.clearAndFree(self.child_allocator);
|
|
},
|
|
.retain_capacity => {
|
|
for (self.slabs.values()) |*slab| {
|
|
slab.bitset.setAll();
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
const Stats = struct {
|
|
total_allocated_bytes: usize,
|
|
bytes_in_use: usize,
|
|
bytes_free: usize,
|
|
slab_count: usize,
|
|
total_chunks: usize,
|
|
total_slots: usize,
|
|
slots_in_use: usize,
|
|
slots_free: usize,
|
|
fragmentation_ratio: f64,
|
|
utilization_ratio: f64,
|
|
slabs: []const Slab.Stats,
|
|
|
|
pub fn print(self: *const Stats, stream: *std.io.Writer) !void {
|
|
try stream.print("\n", .{});
|
|
try stream.print("\n=== Slab Allocator Statistics ===\n", .{});
|
|
try stream.print("Overall Memory:\n", .{});
|
|
try stream.print(" Total allocated: {} bytes ({d:.2} MB)\n", .{
|
|
self.total_allocated_bytes,
|
|
@as(f64, @floatFromInt(self.total_allocated_bytes)) / 1_048_576.0,
|
|
});
|
|
try stream.print(" In use: {} bytes ({d:.2} MB)\n", .{
|
|
self.bytes_in_use,
|
|
@as(f64, @floatFromInt(self.bytes_in_use)) / 1_048_576.0,
|
|
});
|
|
try stream.print(" Free: {} bytes ({d:.2} MB)\n", .{
|
|
self.bytes_free,
|
|
@as(f64, @floatFromInt(self.bytes_free)) / 1_048_576.0,
|
|
});
|
|
|
|
try stream.print("\nOverall Structure:\n", .{});
|
|
try stream.print(" Slab Count: {}\n", .{self.slab_count});
|
|
try stream.print(" Total chunks: {}\n", .{self.total_chunks});
|
|
try stream.print(" Total slots: {}\n", .{self.total_slots});
|
|
try stream.print(" Slots in use: {}\n", .{self.slots_in_use});
|
|
try stream.print(" Slots free: {}\n", .{self.slots_free});
|
|
|
|
try stream.print("\nOverall Efficiency:\n", .{});
|
|
try stream.print(" Utilization: {d:.1}%\n", .{self.utilization_ratio * 100.0});
|
|
try stream.print(" Fragmentation: {d:.1}%\n", .{self.fragmentation_ratio * 100.0});
|
|
|
|
if (self.slabs.len > 0) {
|
|
try stream.print("\nPer-Slab Breakdown:\n", .{});
|
|
try stream.print(
|
|
" {s:>5} | {s:>4} | {s:>6} | {s:>6} | {s:>6} | {s:>10} | {s:>6}\n",
|
|
.{ "Size", "Algn", "Chunks", "Slots", "InUse", "Bytes", "Util%" },
|
|
);
|
|
try stream.print(
|
|
" {s:-<5}-+-{s:-<4}-+-{s:-<6}-+-{s:-<6}-+-{s:-<6}-+-{s:-<10}-+-{s:-<6}\n",
|
|
.{ "", "", "", "", "", "", "" },
|
|
);
|
|
|
|
for (self.slabs) |slab| {
|
|
try stream.print(" {d:5} | {d:4} | {d:6} | {d:6} | {d:6} | {d:10} | {d:5.1}%\n", .{
|
|
slab.key.size,
|
|
@intFromEnum(slab.key.alignment),
|
|
slab.chunk_count,
|
|
slab.total_slots,
|
|
slab.slots_in_use,
|
|
slab.bytes_allocated,
|
|
slab.utilization_ratio * 100.0,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
pub fn getStats(self: *Self, a: std.mem.Allocator) !Stats {
|
|
var slab_stats: std.ArrayList(Slab.Stats) = try .initCapacity(a, self.slabs.entries.len);
|
|
errdefer slab_stats.deinit(a);
|
|
|
|
var stats = Stats{
|
|
.total_allocated_bytes = 0,
|
|
.bytes_in_use = 0,
|
|
.bytes_free = 0,
|
|
.slab_count = self.slabs.count(),
|
|
.total_chunks = 0,
|
|
.total_slots = 0,
|
|
.slots_in_use = 0,
|
|
.slots_free = 0,
|
|
.fragmentation_ratio = 0.0,
|
|
.utilization_ratio = 0.0,
|
|
.slabs = &.{},
|
|
};
|
|
|
|
var it = self.slabs.iterator();
|
|
while (it.next()) |entry| {
|
|
const key = entry.key_ptr.*;
|
|
const slab = entry.value_ptr;
|
|
const slab_stat = slab.getStats(key);
|
|
|
|
slab_stats.appendAssumeCapacity(slab_stat);
|
|
|
|
stats.total_allocated_bytes += slab_stat.bytes_allocated;
|
|
stats.bytes_in_use += slab_stat.bytes_in_use;
|
|
stats.bytes_free += slab_stat.bytes_free;
|
|
stats.total_chunks += slab_stat.chunk_count;
|
|
stats.total_slots += slab_stat.total_slots;
|
|
stats.slots_in_use += slab_stat.slots_in_use;
|
|
stats.slots_free += slab_stat.slots_free;
|
|
}
|
|
|
|
if (stats.total_allocated_bytes > 0) {
|
|
stats.fragmentation_ratio = @as(f64, @floatFromInt(stats.bytes_free)) /
|
|
@as(f64, @floatFromInt(stats.total_allocated_bytes));
|
|
stats.utilization_ratio = @as(f64, @floatFromInt(stats.bytes_in_use)) /
|
|
@as(f64, @floatFromInt(stats.total_allocated_bytes));
|
|
}
|
|
|
|
stats.slabs = try slab_stats.toOwnedSlice(a);
|
|
return stats;
|
|
}
|
|
|
|
pub const vtable = Allocator.VTable{
|
|
.alloc = alloc,
|
|
.free = free,
|
|
.remap = Allocator.noRemap,
|
|
.resize = Allocator.noResize,
|
|
};
|
|
|
|
pub fn allocator(self: *Self) Allocator {
|
|
return .{
|
|
.ptr = self,
|
|
.vtable = &vtable,
|
|
};
|
|
}
|
|
|
|
fn alloc(ctx: *anyopaque, len: usize, alignment: Alignment, ret_addr: usize) ?[*]u8 {
|
|
const self: *Self = @ptrCast(@alignCast(ctx));
|
|
_ = ret_addr;
|
|
|
|
const aligned_len = std.mem.alignForward(usize, len, alignment.toByteUnits());
|
|
|
|
const list_gop = self.slabs.getOrPut(
|
|
self.child_allocator,
|
|
SlabKey{ .size = aligned_len, .alignment = alignment },
|
|
) catch return null;
|
|
|
|
if (!list_gop.found_existing) {
|
|
list_gop.value_ptr.* = Slab.init(
|
|
self.child_allocator,
|
|
alignment,
|
|
aligned_len,
|
|
self.max_slot_count,
|
|
) catch return null;
|
|
}
|
|
|
|
const list = list_gop.value_ptr;
|
|
const buf = list.alloc(self.child_allocator) catch return null;
|
|
return buf[0..len].ptr;
|
|
}
|
|
|
|
fn free(ctx: *anyopaque, memory: []u8, alignment: Alignment, ret_addr: usize) void {
|
|
const self: *Self = @ptrCast(@alignCast(ctx));
|
|
_ = ret_addr;
|
|
|
|
const ptr = memory.ptr;
|
|
const len = memory.len;
|
|
const aligned_len = std.mem.alignForward(usize, len, alignment.toByteUnits());
|
|
|
|
const list = self.slabs.getPtr(.{ .size = aligned_len, .alignment = alignment }).?;
|
|
list.free(ptr);
|
|
}
|
|
};
|
|
|
|
const testing = std.testing;
|
|
|
|
const TestSlabAllocator = SlabAllocator;
|
|
|
|
test "slab allocator - basic allocation and free" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
// Allocate some memory
|
|
const ptr1 = try allocator.alloc(u8, 100);
|
|
try testing.expect(ptr1.len == 100);
|
|
|
|
// Write to it to ensure it's valid
|
|
@memset(ptr1, 42);
|
|
try testing.expectEqual(@as(u8, 42), ptr1[50]);
|
|
|
|
// Free it
|
|
allocator.free(ptr1);
|
|
}
|
|
|
|
test "slab allocator - multiple allocations" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
const ptr1 = try allocator.alloc(u8, 64);
|
|
const ptr2 = try allocator.alloc(u8, 128);
|
|
const ptr3 = try allocator.alloc(u8, 256);
|
|
|
|
// Ensure they don't overlap
|
|
const addr1 = @intFromPtr(ptr1.ptr);
|
|
const addr2 = @intFromPtr(ptr2.ptr);
|
|
const addr3 = @intFromPtr(ptr3.ptr);
|
|
|
|
try testing.expect(addr1 + 64 <= addr2 or addr2 + 128 <= addr1);
|
|
try testing.expect(addr2 + 128 <= addr3 or addr3 + 256 <= addr2);
|
|
|
|
allocator.free(ptr1);
|
|
allocator.free(ptr2);
|
|
allocator.free(ptr3);
|
|
}
|
|
|
|
test "slab allocator - no coalescing (different size classes)" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
// Allocate two blocks of same size
|
|
const ptr1 = try allocator.alloc(u8, 128);
|
|
const ptr2 = try allocator.alloc(u8, 128);
|
|
|
|
// Free them (no coalescing in slab allocator)
|
|
allocator.free(ptr1);
|
|
allocator.free(ptr2);
|
|
|
|
// Can't allocate larger block from these freed 128-byte blocks
|
|
const ptr3 = try allocator.alloc(u8, 256);
|
|
|
|
// ptr3 will be from a different size class, not coalesced from ptr1+ptr2
|
|
const addr1 = @intFromPtr(ptr1.ptr);
|
|
const addr3 = @intFromPtr(ptr3.ptr);
|
|
|
|
// They should NOT be adjacent (different size classes)
|
|
try testing.expect(addr3 < addr1 or addr3 >= addr1 + 256);
|
|
|
|
allocator.free(ptr3);
|
|
}
|
|
|
|
test "slab allocator - reuse freed memory" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
const ptr1 = try allocator.alloc(u8, 64);
|
|
const addr1 = @intFromPtr(ptr1.ptr);
|
|
allocator.free(ptr1);
|
|
|
|
// Allocate same size, should reuse from same slab
|
|
const ptr2 = try allocator.alloc(u8, 64);
|
|
const addr2 = @intFromPtr(ptr2.ptr);
|
|
|
|
try testing.expectEqual(addr1, addr2);
|
|
allocator.free(ptr2);
|
|
}
|
|
|
|
test "slab allocator - multiple size classes" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
// Allocate various sizes - each creates a new slab
|
|
var ptrs: [10][]u8 = undefined;
|
|
const sizes = [_]usize{ 24, 40, 64, 88, 128, 144, 200, 256, 512, 1000 };
|
|
|
|
for (&ptrs, sizes) |*ptr, size| {
|
|
ptr.* = try allocator.alloc(u8, size);
|
|
@memset(ptr.*, 0xFF);
|
|
}
|
|
|
|
// Should have created multiple slabs
|
|
try testing.expect(slab_alloc.slabs.count() >= 10);
|
|
|
|
// Free all
|
|
for (ptrs) |ptr| {
|
|
allocator.free(ptr);
|
|
}
|
|
}
|
|
|
|
test "slab allocator - various sizes" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
// Test different sizes (not limited to powers of 2!)
|
|
const sizes = [_]usize{ 8, 16, 24, 32, 40, 64, 88, 128, 144, 256 };
|
|
|
|
for (sizes) |size| {
|
|
const ptr = try allocator.alloc(u8, size);
|
|
try testing.expect(ptr.len == size);
|
|
@memset(ptr, @intCast(size & 0xFF));
|
|
allocator.free(ptr);
|
|
}
|
|
}
|
|
|
|
test "slab allocator - exact sizes (no rounding)" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
// Odd sizes stay exact (unlike buddy which rounds to power of 2)
|
|
const ptr1 = try allocator.alloc(u8, 100);
|
|
const ptr2 = try allocator.alloc(u8, 200);
|
|
const ptr3 = try allocator.alloc(u8, 50);
|
|
|
|
// Exact sizes!
|
|
try testing.expect(ptr1.len == 100);
|
|
try testing.expect(ptr2.len == 200);
|
|
try testing.expect(ptr3.len == 50);
|
|
|
|
allocator.free(ptr1);
|
|
allocator.free(ptr2);
|
|
allocator.free(ptr3);
|
|
}
|
|
|
|
test "slab allocator - chunk allocation" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
// Allocate many items of same size to force multiple chunks
|
|
var ptrs: [100][]u8 = undefined;
|
|
for (&ptrs) |*ptr| {
|
|
ptr.* = try allocator.alloc(u8, 64);
|
|
}
|
|
|
|
// Should have allocated multiple chunks (32 items per chunk)
|
|
const slab = slab_alloc.slabs.getPtr(.{ .size = 64, .alignment = Alignment.@"1" }).?;
|
|
try testing.expect(slab.chunks.items.len > 1);
|
|
|
|
// Free all
|
|
for (ptrs) |ptr| {
|
|
allocator.free(ptr);
|
|
}
|
|
}
|
|
|
|
test "slab allocator - reset with retain_capacity" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
// Allocate some memory
|
|
const ptr1 = try allocator.alloc(u8, 128);
|
|
const ptr2 = try allocator.alloc(u8, 256);
|
|
_ = ptr1;
|
|
_ = ptr2;
|
|
|
|
const slabs_before = slab_alloc.slabs.count();
|
|
const slab_128 = slab_alloc.slabs.getPtr(.{ .size = 128, .alignment = Alignment.@"1" }).?;
|
|
const chunks_before = slab_128.chunks.items.len;
|
|
|
|
// Reset but keep chunks
|
|
slab_alloc.reset(.retain_capacity);
|
|
|
|
try testing.expectEqual(slabs_before, slab_alloc.slabs.count());
|
|
try testing.expectEqual(chunks_before, slab_128.chunks.items.len);
|
|
|
|
// Should be able to allocate again
|
|
const ptr3 = try allocator.alloc(u8, 512);
|
|
allocator.free(ptr3);
|
|
}
|
|
|
|
test "slab allocator - reset with clear" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
// Allocate some memory
|
|
const ptr1 = try allocator.alloc(u8, 128);
|
|
_ = ptr1;
|
|
|
|
try testing.expect(slab_alloc.slabs.count() > 0);
|
|
|
|
// Reset and free everything
|
|
slab_alloc.reset(.clear);
|
|
|
|
try testing.expectEqual(@as(usize, 0), slab_alloc.slabs.count());
|
|
|
|
// Should still work after reset
|
|
const ptr2 = try allocator.alloc(u8, 256);
|
|
allocator.free(ptr2);
|
|
}
|
|
|
|
test "slab allocator - stress test" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
var prng = std.Random.DefaultPrng.init(0);
|
|
const random = prng.random();
|
|
|
|
var ptrs: std.ArrayList([]u8) = .empty;
|
|
|
|
defer {
|
|
for (ptrs.items) |ptr| {
|
|
allocator.free(ptr);
|
|
}
|
|
ptrs.deinit(allocator);
|
|
}
|
|
|
|
// Random allocations and frees
|
|
var i: usize = 0;
|
|
while (i < 100) : (i += 1) {
|
|
if (random.boolean() and ptrs.items.len > 0) {
|
|
// Free a random allocation
|
|
const index = random.uintLessThan(usize, ptrs.items.len);
|
|
allocator.free(ptrs.swapRemove(index));
|
|
} else {
|
|
// Allocate random size (8 to 512)
|
|
const size = random.uintAtMost(usize, 504) + 8;
|
|
const ptr = try allocator.alloc(u8, size);
|
|
try ptrs.append(allocator, ptr);
|
|
|
|
// Write to ensure it's valid
|
|
@memset(ptr, @intCast(i & 0xFF));
|
|
}
|
|
}
|
|
}
|
|
|
|
test "slab allocator - alignment" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
const ptr1 = try allocator.create(u64);
|
|
const ptr2 = try allocator.create(u32);
|
|
const ptr3 = try allocator.create([100]u8);
|
|
|
|
allocator.destroy(ptr1);
|
|
allocator.destroy(ptr2);
|
|
allocator.destroy(ptr3);
|
|
}
|
|
|
|
test "slab allocator - no resize support" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
const slice = try allocator.alloc(u8, 100);
|
|
@memset(slice, 42);
|
|
|
|
// Resize should fail (not supported)
|
|
try testing.expect(!allocator.resize(slice, 90));
|
|
try testing.expect(!allocator.resize(slice, 200));
|
|
|
|
allocator.free(slice);
|
|
}
|
|
|
|
test "slab allocator - fragmentation pattern" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
// Allocate 10 items
|
|
var items: [10][]u8 = undefined;
|
|
for (&items) |*item| {
|
|
item.* = try allocator.alloc(u8, 64);
|
|
@memset(item.*, 0xFF);
|
|
}
|
|
|
|
// Free every other one
|
|
allocator.free(items[0]);
|
|
allocator.free(items[2]);
|
|
allocator.free(items[4]);
|
|
allocator.free(items[6]);
|
|
allocator.free(items[8]);
|
|
|
|
// Allocate new items - should reuse freed slots
|
|
const new1 = try allocator.alloc(u8, 64);
|
|
const new2 = try allocator.alloc(u8, 64);
|
|
const new3 = try allocator.alloc(u8, 64);
|
|
|
|
// Should get some of the freed slots back
|
|
const addrs = [_]usize{
|
|
@intFromPtr(items[0].ptr),
|
|
@intFromPtr(items[2].ptr),
|
|
@intFromPtr(items[4].ptr),
|
|
@intFromPtr(items[6].ptr),
|
|
@intFromPtr(items[8].ptr),
|
|
};
|
|
|
|
const new1_addr = @intFromPtr(new1.ptr);
|
|
var found = false;
|
|
for (addrs) |addr| {
|
|
if (new1_addr == addr) found = true;
|
|
}
|
|
try testing.expect(found);
|
|
|
|
// Cleanup
|
|
allocator.free(items[1]);
|
|
allocator.free(items[3]);
|
|
allocator.free(items[5]);
|
|
allocator.free(items[7]);
|
|
allocator.free(items[9]);
|
|
allocator.free(new1);
|
|
allocator.free(new2);
|
|
allocator.free(new3);
|
|
}
|
|
|
|
test "slab allocator - many small allocations" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
// Allocate 1000 small items
|
|
var ptrs: std.ArrayList([]u8) = .empty;
|
|
defer {
|
|
for (ptrs.items) |ptr| {
|
|
allocator.free(ptr);
|
|
}
|
|
ptrs.deinit(allocator);
|
|
}
|
|
|
|
var i: usize = 0;
|
|
while (i < 1000) : (i += 1) {
|
|
const ptr = try allocator.alloc(u8, 24);
|
|
try ptrs.append(allocator, ptr);
|
|
}
|
|
|
|
// Should have created multiple chunks
|
|
const slab = slab_alloc.slabs.getPtr(.{ .size = 24, .alignment = Alignment.@"1" }).?;
|
|
try testing.expect(slab.chunks.items.len > 1);
|
|
}
|
|
|
|
test "slab allocator - zero waste for exact sizes" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
// These sizes have zero internal fragmentation (unlike buddy)
|
|
const sizes = [_]usize{ 24, 40, 56, 88, 144, 152, 184, 232, 648 };
|
|
|
|
for (sizes) |size| {
|
|
const ptr = try allocator.alloc(u8, size);
|
|
|
|
// Exact size returned!
|
|
try testing.expectEqual(size, ptr.len);
|
|
|
|
@memset(ptr, 0xFF);
|
|
allocator.free(ptr);
|
|
}
|
|
}
|
|
|
|
test "slab allocator - different size classes don't interfere" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
// Allocate size 64
|
|
const ptr_64 = try allocator.alloc(u8, 64);
|
|
const addr_64 = @intFromPtr(ptr_64.ptr);
|
|
allocator.free(ptr_64);
|
|
|
|
// Allocate size 128 - should NOT reuse size-64 slot
|
|
const ptr_128 = try allocator.alloc(u8, 128);
|
|
const addr_128 = @intFromPtr(ptr_128.ptr);
|
|
|
|
try testing.expect(addr_64 != addr_128);
|
|
|
|
// Allocate size 64 again - SHOULD reuse original slot
|
|
const ptr_64_again = try allocator.alloc(u8, 64);
|
|
const addr_64_again = @intFromPtr(ptr_64_again.ptr);
|
|
|
|
try testing.expectEqual(addr_64, addr_64_again);
|
|
|
|
allocator.free(ptr_128);
|
|
allocator.free(ptr_64_again);
|
|
}
|
|
|
|
test "slab allocator - 16-byte alignment" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
// Request 16-byte aligned memory
|
|
const ptr = try allocator.alignedAlloc(u8, .@"16", 152);
|
|
defer allocator.free(ptr);
|
|
|
|
// Verify alignment
|
|
const addr = @intFromPtr(ptr.ptr);
|
|
try testing.expect(addr % 16 == 0);
|
|
|
|
// Make sure we can use it
|
|
@memset(ptr, 0xFF);
|
|
}
|
|
|
|
test "slab allocator - various alignments" {
|
|
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
|
|
defer slab_alloc.deinit();
|
|
|
|
const allocator = slab_alloc.allocator();
|
|
|
|
const alignments = [_]std.mem.Alignment{ .@"1", .@"2", .@"4", .@"8", .@"16" };
|
|
|
|
inline for (alignments) |alignment| {
|
|
const ptr = try allocator.alignedAlloc(u8, alignment, 100);
|
|
defer allocator.free(ptr);
|
|
|
|
const addr = @intFromPtr(ptr.ptr);
|
|
const align_value = alignment.toByteUnits();
|
|
try testing.expect(addr % align_value == 0);
|
|
}
|
|
}
|