Files
browser/src/slab.zig
2025-11-26 11:05:20 -08:00

864 lines
27 KiB
Zig

const std = @import("std");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const Alignment = std.mem.Alignment;
const Slab = struct {
alignment: Alignment,
item_size: usize,
max_slot_count: usize,
bitset: std.bit_set.DynamicBitSetUnmanaged,
chunks: std.ArrayListUnmanaged([]u8),
pub fn init(
allocator: Allocator,
alignment: Alignment,
item_size: usize,
max_slot_count: usize,
) !Slab {
return .{
.alignment = alignment,
.item_size = item_size,
.bitset = try .initFull(allocator, 0),
.chunks = .empty,
.max_slot_count = max_slot_count,
};
}
pub fn deinit(self: *Slab, allocator: Allocator) void {
self.bitset.deinit(allocator);
for (self.chunks.items) |chunk| {
allocator.rawFree(chunk, self.alignment, @returnAddress());
}
self.chunks.deinit(allocator);
}
inline fn calculateChunkSize(self: *Slab, chunk_index: usize) usize {
const safe_index: u6 = @intCast(@min(std.math.maxInt(u6), chunk_index));
const exponential = @as(usize, 1) << safe_index;
return @min(exponential, self.max_slot_count);
}
inline fn toBitsetIndex(self: *Slab, chunk_index: usize, slot_index: usize) usize {
var offset: usize = 0;
for (0..chunk_index) |i| {
const chunk_size = self.calculateChunkSize(i);
offset += chunk_size;
}
return offset + slot_index;
}
inline fn toChunkAndSlotIndices(self: *Slab, bitset_index: usize) struct { usize, usize } {
var offset: usize = 0;
var chunk_index: usize = 0;
while (chunk_index < self.chunks.items.len) : (chunk_index += 1) {
const chunk_size = self.calculateChunkSize(chunk_index);
if (bitset_index < offset + chunk_size) {
return .{ chunk_index, bitset_index - offset };
}
offset += chunk_size;
}
unreachable;
}
fn alloc(self: *Slab, allocator: Allocator) ![]u8 {
if (self.bitset.findFirstSet()) |index| {
const chunk_index, const slot_index = self.toChunkAndSlotIndices(index);
// if we have a free slot
self.bitset.unset(index);
const chunk = self.chunks.items[chunk_index];
const offset = slot_index * self.item_size;
return chunk.ptr[offset..][0..self.item_size];
} else {
const old_capacity = self.bitset.bit_length;
// if we have don't have a free slot
try self.allocateChunk(allocator);
const first_slot_index = old_capacity;
self.bitset.unset(first_slot_index);
const new_chunk = self.chunks.items[self.chunks.items.len - 1];
return new_chunk.ptr[0..self.item_size];
}
}
fn free(self: *Slab, ptr: [*]u8) void {
const addr = @intFromPtr(ptr);
for (self.chunks.items, 0..) |chunk, i| {
const chunk_start = @intFromPtr(chunk.ptr);
const chunk_end = chunk_start + chunk.len;
if (addr >= chunk_start and addr < chunk_end) {
const offset = addr - chunk_start;
const slot_index = offset / self.item_size;
const bitset_index = self.toBitsetIndex(i, slot_index);
assert(!self.bitset.isSet(bitset_index));
self.bitset.set(bitset_index);
return;
}
}
unreachable;
}
fn allocateChunk(self: *Slab, allocator: Allocator) !void {
const next_chunk_size = self.calculateChunkSize(self.chunks.items.len);
const chunk_len = self.item_size * next_chunk_size;
const chunk_ptr = allocator.rawAlloc(
chunk_len,
self.alignment,
@returnAddress(),
) orelse return error.FailedChildAllocation;
const chunk = chunk_ptr[0..chunk_len];
try self.chunks.append(allocator, chunk);
const new_capacity = self.bitset.bit_length + next_chunk_size;
try self.bitset.resize(allocator, new_capacity, true);
}
const Stats = struct {
key: SlabKey,
item_size: usize,
chunk_count: usize,
total_slots: usize,
slots_in_use: usize,
slots_free: usize,
bytes_allocated: usize,
bytes_in_use: usize,
bytes_free: usize,
utilization_ratio: f64,
};
fn getStats(self: *const Slab, key: SlabKey) Stats {
const total_slots = self.bitset.bit_length;
const free_slots = self.bitset.count();
const used_slots = total_slots - free_slots;
const bytes_allocated = total_slots * self.item_size;
const bytes_in_use = used_slots * self.item_size;
const utilization_ratio = if (bytes_allocated > 0)
@as(f64, @floatFromInt(bytes_in_use)) / @as(f64, @floatFromInt(bytes_allocated))
else
0.0;
return .{
.key = key,
.item_size = self.item_size,
.chunk_count = self.chunks.items.len,
.total_slots = total_slots,
.slots_in_use = used_slots,
.slots_free = free_slots,
.bytes_allocated = bytes_allocated,
.bytes_in_use = bytes_in_use,
.bytes_free = free_slots * self.item_size,
.utilization_ratio = utilization_ratio,
};
}
};
const SlabKey = struct {
size: usize,
alignment: Alignment,
};
pub const SlabAllocator = struct {
const Self = @This();
child_allocator: Allocator,
max_slot_count: usize,
slabs: std.ArrayHashMapUnmanaged(SlabKey, Slab, struct {
const Context = @This();
pub fn hash(_: Context, key: SlabKey) u32 {
var hasher = std.hash.Wyhash.init(0);
std.hash.autoHash(&hasher, key.size);
std.hash.autoHash(&hasher, key.alignment);
return @truncate(hasher.final());
}
pub fn eql(_: Context, a: SlabKey, b: SlabKey, _: usize) bool {
return a.size == b.size and a.alignment == b.alignment;
}
}, false) = .empty,
pub fn init(child_allocator: Allocator, max_slot_count: usize) Self {
assert(std.math.isPowerOfTwo(max_slot_count));
return .{
.child_allocator = child_allocator,
.slabs = .empty,
.max_slot_count = max_slot_count,
};
}
pub fn deinit(self: *Self) void {
for (self.slabs.values()) |*slab| {
slab.deinit(self.child_allocator);
}
self.slabs.deinit(self.child_allocator);
}
pub const ResetKind = enum {
/// Free all chunks and release all memory.
clear,
/// Keep all chunks, reset trees to reuse memory.
retain_capacity,
};
/// This clears all of the stored memory, freeing the currently used chunks.
pub fn reset(self: *Self, kind: ResetKind) void {
switch (kind) {
.clear => {
for (self.slabs.values()) |*slab| {
for (slab.chunks.items) |chunk| {
self.child_allocator.free(chunk);
}
slab.chunks.clearAndFree(self.child_allocator);
slab.bitset.deinit(self.child_allocator);
}
self.slabs.clearAndFree(self.child_allocator);
},
.retain_capacity => {
for (self.slabs.values()) |*slab| {
slab.bitset.setAll();
}
},
}
}
const Stats = struct {
total_allocated_bytes: usize,
bytes_in_use: usize,
bytes_free: usize,
slab_count: usize,
total_chunks: usize,
total_slots: usize,
slots_in_use: usize,
slots_free: usize,
fragmentation_ratio: f64,
utilization_ratio: f64,
slabs: []const Slab.Stats,
pub fn print(self: *const Stats, stream: *std.io.Writer) !void {
try stream.print("\n", .{});
try stream.print("\n=== Slab Allocator Statistics ===\n", .{});
try stream.print("Overall Memory:\n", .{});
try stream.print(" Total allocated: {} bytes ({d:.2} MB)\n", .{
self.total_allocated_bytes,
@as(f64, @floatFromInt(self.total_allocated_bytes)) / 1_048_576.0,
});
try stream.print(" In use: {} bytes ({d:.2} MB)\n", .{
self.bytes_in_use,
@as(f64, @floatFromInt(self.bytes_in_use)) / 1_048_576.0,
});
try stream.print(" Free: {} bytes ({d:.2} MB)\n", .{
self.bytes_free,
@as(f64, @floatFromInt(self.bytes_free)) / 1_048_576.0,
});
try stream.print("\nOverall Structure:\n", .{});
try stream.print(" Slab Count: {}\n", .{self.slab_count});
try stream.print(" Total chunks: {}\n", .{self.total_chunks});
try stream.print(" Total slots: {}\n", .{self.total_slots});
try stream.print(" Slots in use: {}\n", .{self.slots_in_use});
try stream.print(" Slots free: {}\n", .{self.slots_free});
try stream.print("\nOverall Efficiency:\n", .{});
try stream.print(" Utilization: {d:.1}%\n", .{self.utilization_ratio * 100.0});
try stream.print(" Fragmentation: {d:.1}%\n", .{self.fragmentation_ratio * 100.0});
if (self.slabs.len > 0) {
try stream.print("\nPer-Slab Breakdown:\n", .{});
try stream.print(
" {s:>5} | {s:>4} | {s:>6} | {s:>6} | {s:>6} | {s:>10} | {s:>6}\n",
.{ "Size", "Algn", "Chunks", "Slots", "InUse", "Bytes", "Util%" },
);
try stream.print(
" {s:-<5}-+-{s:-<4}-+-{s:-<6}-+-{s:-<6}-+-{s:-<6}-+-{s:-<10}-+-{s:-<6}\n",
.{ "", "", "", "", "", "", "" },
);
for (self.slabs) |slab| {
try stream.print(" {d:5} | {d:4} | {d:6} | {d:6} | {d:6} | {d:10} | {d:5.1}%\n", .{
slab.key.size,
@intFromEnum(slab.key.alignment),
slab.chunk_count,
slab.total_slots,
slab.slots_in_use,
slab.bytes_allocated,
slab.utilization_ratio * 100.0,
});
}
}
}
};
pub fn getStats(self: *Self, a: std.mem.Allocator) !Stats {
var slab_stats: std.ArrayList(Slab.Stats) = try .initCapacity(a, self.slabs.entries.len);
errdefer slab_stats.deinit(a);
var stats = Stats{
.total_allocated_bytes = 0,
.bytes_in_use = 0,
.bytes_free = 0,
.slab_count = self.slabs.count(),
.total_chunks = 0,
.total_slots = 0,
.slots_in_use = 0,
.slots_free = 0,
.fragmentation_ratio = 0.0,
.utilization_ratio = 0.0,
.slabs = &.{},
};
var it = self.slabs.iterator();
while (it.next()) |entry| {
const key = entry.key_ptr.*;
const slab = entry.value_ptr;
const slab_stat = slab.getStats(key);
slab_stats.appendAssumeCapacity(slab_stat);
stats.total_allocated_bytes += slab_stat.bytes_allocated;
stats.bytes_in_use += slab_stat.bytes_in_use;
stats.bytes_free += slab_stat.bytes_free;
stats.total_chunks += slab_stat.chunk_count;
stats.total_slots += slab_stat.total_slots;
stats.slots_in_use += slab_stat.slots_in_use;
stats.slots_free += slab_stat.slots_free;
}
if (stats.total_allocated_bytes > 0) {
stats.fragmentation_ratio = @as(f64, @floatFromInt(stats.bytes_free)) /
@as(f64, @floatFromInt(stats.total_allocated_bytes));
stats.utilization_ratio = @as(f64, @floatFromInt(stats.bytes_in_use)) /
@as(f64, @floatFromInt(stats.total_allocated_bytes));
}
stats.slabs = try slab_stats.toOwnedSlice(a);
return stats;
}
pub const vtable = Allocator.VTable{
.alloc = alloc,
.free = free,
.remap = Allocator.noRemap,
.resize = Allocator.noResize,
};
pub fn allocator(self: *Self) Allocator {
return .{
.ptr = self,
.vtable = &vtable,
};
}
fn alloc(ctx: *anyopaque, len: usize, alignment: Alignment, ret_addr: usize) ?[*]u8 {
const self: *Self = @ptrCast(@alignCast(ctx));
_ = ret_addr;
const aligned_len = std.mem.alignForward(usize, len, alignment.toByteUnits());
const list_gop = self.slabs.getOrPut(
self.child_allocator,
SlabKey{ .size = aligned_len, .alignment = alignment },
) catch return null;
if (!list_gop.found_existing) {
list_gop.value_ptr.* = Slab.init(
self.child_allocator,
alignment,
aligned_len,
self.max_slot_count,
) catch return null;
}
const list = list_gop.value_ptr;
const buf = list.alloc(self.child_allocator) catch return null;
return buf[0..len].ptr;
}
fn free(ctx: *anyopaque, memory: []u8, alignment: Alignment, ret_addr: usize) void {
const self: *Self = @ptrCast(@alignCast(ctx));
_ = ret_addr;
const ptr = memory.ptr;
const len = memory.len;
const aligned_len = std.mem.alignForward(usize, len, alignment.toByteUnits());
const list = self.slabs.getPtr(.{ .size = aligned_len, .alignment = alignment }).?;
list.free(ptr);
}
};
const testing = std.testing;
const TestSlabAllocator = SlabAllocator;
test "slab allocator - basic allocation and free" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
// Allocate some memory
const ptr1 = try allocator.alloc(u8, 100);
try testing.expect(ptr1.len == 100);
// Write to it to ensure it's valid
@memset(ptr1, 42);
try testing.expectEqual(@as(u8, 42), ptr1[50]);
// Free it
allocator.free(ptr1);
}
test "slab allocator - multiple allocations" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
const ptr1 = try allocator.alloc(u8, 64);
const ptr2 = try allocator.alloc(u8, 128);
const ptr3 = try allocator.alloc(u8, 256);
// Ensure they don't overlap
const addr1 = @intFromPtr(ptr1.ptr);
const addr2 = @intFromPtr(ptr2.ptr);
const addr3 = @intFromPtr(ptr3.ptr);
try testing.expect(addr1 + 64 <= addr2 or addr2 + 128 <= addr1);
try testing.expect(addr2 + 128 <= addr3 or addr3 + 256 <= addr2);
allocator.free(ptr1);
allocator.free(ptr2);
allocator.free(ptr3);
}
test "slab allocator - no coalescing (different size classes)" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
// Allocate two blocks of same size
const ptr1 = try allocator.alloc(u8, 128);
const ptr2 = try allocator.alloc(u8, 128);
// Free them (no coalescing in slab allocator)
allocator.free(ptr1);
allocator.free(ptr2);
// Can't allocate larger block from these freed 128-byte blocks
const ptr3 = try allocator.alloc(u8, 256);
// ptr3 will be from a different size class, not coalesced from ptr1+ptr2
const addr1 = @intFromPtr(ptr1.ptr);
const addr3 = @intFromPtr(ptr3.ptr);
// They should NOT be adjacent (different size classes)
try testing.expect(addr3 < addr1 or addr3 >= addr1 + 256);
allocator.free(ptr3);
}
test "slab allocator - reuse freed memory" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
const ptr1 = try allocator.alloc(u8, 64);
const addr1 = @intFromPtr(ptr1.ptr);
allocator.free(ptr1);
// Allocate same size, should reuse from same slab
const ptr2 = try allocator.alloc(u8, 64);
const addr2 = @intFromPtr(ptr2.ptr);
try testing.expectEqual(addr1, addr2);
allocator.free(ptr2);
}
test "slab allocator - multiple size classes" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
// Allocate various sizes - each creates a new slab
var ptrs: [10][]u8 = undefined;
const sizes = [_]usize{ 24, 40, 64, 88, 128, 144, 200, 256, 512, 1000 };
for (&ptrs, sizes) |*ptr, size| {
ptr.* = try allocator.alloc(u8, size);
@memset(ptr.*, 0xFF);
}
// Should have created multiple slabs
try testing.expect(slab_alloc.slabs.count() >= 10);
// Free all
for (ptrs) |ptr| {
allocator.free(ptr);
}
}
test "slab allocator - various sizes" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
// Test different sizes (not limited to powers of 2!)
const sizes = [_]usize{ 8, 16, 24, 32, 40, 64, 88, 128, 144, 256 };
for (sizes) |size| {
const ptr = try allocator.alloc(u8, size);
try testing.expect(ptr.len == size);
@memset(ptr, @intCast(size & 0xFF));
allocator.free(ptr);
}
}
test "slab allocator - exact sizes (no rounding)" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
// Odd sizes stay exact (unlike buddy which rounds to power of 2)
const ptr1 = try allocator.alloc(u8, 100);
const ptr2 = try allocator.alloc(u8, 200);
const ptr3 = try allocator.alloc(u8, 50);
// Exact sizes!
try testing.expect(ptr1.len == 100);
try testing.expect(ptr2.len == 200);
try testing.expect(ptr3.len == 50);
allocator.free(ptr1);
allocator.free(ptr2);
allocator.free(ptr3);
}
test "slab allocator - chunk allocation" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
// Allocate many items of same size to force multiple chunks
var ptrs: [100][]u8 = undefined;
for (&ptrs) |*ptr| {
ptr.* = try allocator.alloc(u8, 64);
}
// Should have allocated multiple chunks (32 items per chunk)
const slab = slab_alloc.slabs.getPtr(.{ .size = 64, .alignment = Alignment.@"1" }).?;
try testing.expect(slab.chunks.items.len > 1);
// Free all
for (ptrs) |ptr| {
allocator.free(ptr);
}
}
test "slab allocator - reset with retain_capacity" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
// Allocate some memory
const ptr1 = try allocator.alloc(u8, 128);
const ptr2 = try allocator.alloc(u8, 256);
_ = ptr1;
_ = ptr2;
const slabs_before = slab_alloc.slabs.count();
const slab_128 = slab_alloc.slabs.getPtr(.{ .size = 128, .alignment = Alignment.@"1" }).?;
const chunks_before = slab_128.chunks.items.len;
// Reset but keep chunks
slab_alloc.reset(.retain_capacity);
try testing.expectEqual(slabs_before, slab_alloc.slabs.count());
try testing.expectEqual(chunks_before, slab_128.chunks.items.len);
// Should be able to allocate again
const ptr3 = try allocator.alloc(u8, 512);
allocator.free(ptr3);
}
test "slab allocator - reset with clear" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
// Allocate some memory
const ptr1 = try allocator.alloc(u8, 128);
_ = ptr1;
try testing.expect(slab_alloc.slabs.count() > 0);
// Reset and free everything
slab_alloc.reset(.clear);
try testing.expectEqual(@as(usize, 0), slab_alloc.slabs.count());
// Should still work after reset
const ptr2 = try allocator.alloc(u8, 256);
allocator.free(ptr2);
}
test "slab allocator - stress test" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
var prng = std.Random.DefaultPrng.init(0);
const random = prng.random();
var ptrs: std.ArrayList([]u8) = .empty;
defer {
for (ptrs.items) |ptr| {
allocator.free(ptr);
}
ptrs.deinit(allocator);
}
// Random allocations and frees
var i: usize = 0;
while (i < 100) : (i += 1) {
if (random.boolean() and ptrs.items.len > 0) {
// Free a random allocation
const index = random.uintLessThan(usize, ptrs.items.len);
allocator.free(ptrs.swapRemove(index));
} else {
// Allocate random size (8 to 512)
const size = random.uintAtMost(usize, 504) + 8;
const ptr = try allocator.alloc(u8, size);
try ptrs.append(allocator, ptr);
// Write to ensure it's valid
@memset(ptr, @intCast(i & 0xFF));
}
}
}
test "slab allocator - alignment" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
const ptr1 = try allocator.create(u64);
const ptr2 = try allocator.create(u32);
const ptr3 = try allocator.create([100]u8);
allocator.destroy(ptr1);
allocator.destroy(ptr2);
allocator.destroy(ptr3);
}
test "slab allocator - no resize support" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
const slice = try allocator.alloc(u8, 100);
@memset(slice, 42);
// Resize should fail (not supported)
try testing.expect(!allocator.resize(slice, 90));
try testing.expect(!allocator.resize(slice, 200));
allocator.free(slice);
}
test "slab allocator - fragmentation pattern" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
// Allocate 10 items
var items: [10][]u8 = undefined;
for (&items) |*item| {
item.* = try allocator.alloc(u8, 64);
@memset(item.*, 0xFF);
}
// Free every other one
allocator.free(items[0]);
allocator.free(items[2]);
allocator.free(items[4]);
allocator.free(items[6]);
allocator.free(items[8]);
// Allocate new items - should reuse freed slots
const new1 = try allocator.alloc(u8, 64);
const new2 = try allocator.alloc(u8, 64);
const new3 = try allocator.alloc(u8, 64);
// Should get some of the freed slots back
const addrs = [_]usize{
@intFromPtr(items[0].ptr),
@intFromPtr(items[2].ptr),
@intFromPtr(items[4].ptr),
@intFromPtr(items[6].ptr),
@intFromPtr(items[8].ptr),
};
const new1_addr = @intFromPtr(new1.ptr);
var found = false;
for (addrs) |addr| {
if (new1_addr == addr) found = true;
}
try testing.expect(found);
// Cleanup
allocator.free(items[1]);
allocator.free(items[3]);
allocator.free(items[5]);
allocator.free(items[7]);
allocator.free(items[9]);
allocator.free(new1);
allocator.free(new2);
allocator.free(new3);
}
test "slab allocator - many small allocations" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
// Allocate 1000 small items
var ptrs: std.ArrayList([]u8) = .empty;
defer {
for (ptrs.items) |ptr| {
allocator.free(ptr);
}
ptrs.deinit(allocator);
}
var i: usize = 0;
while (i < 1000) : (i += 1) {
const ptr = try allocator.alloc(u8, 24);
try ptrs.append(allocator, ptr);
}
// Should have created multiple chunks
const slab = slab_alloc.slabs.getPtr(.{ .size = 24, .alignment = Alignment.@"1" }).?;
try testing.expect(slab.chunks.items.len > 1);
}
test "slab allocator - zero waste for exact sizes" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
// These sizes have zero internal fragmentation (unlike buddy)
const sizes = [_]usize{ 24, 40, 56, 88, 144, 152, 184, 232, 648 };
for (sizes) |size| {
const ptr = try allocator.alloc(u8, size);
// Exact size returned!
try testing.expectEqual(size, ptr.len);
@memset(ptr, 0xFF);
allocator.free(ptr);
}
}
test "slab allocator - different size classes don't interfere" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
// Allocate size 64
const ptr_64 = try allocator.alloc(u8, 64);
const addr_64 = @intFromPtr(ptr_64.ptr);
allocator.free(ptr_64);
// Allocate size 128 - should NOT reuse size-64 slot
const ptr_128 = try allocator.alloc(u8, 128);
const addr_128 = @intFromPtr(ptr_128.ptr);
try testing.expect(addr_64 != addr_128);
// Allocate size 64 again - SHOULD reuse original slot
const ptr_64_again = try allocator.alloc(u8, 64);
const addr_64_again = @intFromPtr(ptr_64_again.ptr);
try testing.expectEqual(addr_64, addr_64_again);
allocator.free(ptr_128);
allocator.free(ptr_64_again);
}
test "slab allocator - 16-byte alignment" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
// Request 16-byte aligned memory
const ptr = try allocator.alignedAlloc(u8, .@"16", 152);
defer allocator.free(ptr);
// Verify alignment
const addr = @intFromPtr(ptr.ptr);
try testing.expect(addr % 16 == 0);
// Make sure we can use it
@memset(ptr, 0xFF);
}
test "slab allocator - various alignments" {
var slab_alloc = TestSlabAllocator.init(testing.allocator, 16);
defer slab_alloc.deinit();
const allocator = slab_alloc.allocator();
const alignments = [_]std.mem.Alignment{ .@"1", .@"2", .@"4", .@"8", .@"16" };
inline for (alignments) |alignment| {
const ptr = try allocator.alignedAlloc(u8, alignment, 100);
defer allocator.free(ptr);
const addr = @intFromPtr(ptr.ptr);
const align_value = alignment.toByteUnits();
try testing.expect(addr % align_value == 0);
}
}